11,191 research outputs found

    Participatory sensing as an enabler for self-organisation in future cellular networks

    Get PDF
    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Distributed drone base station positioning for emergency cellular networks using reinforcement learning

    Get PDF
    Due to the unpredictability of natural disasters, whenever a catastrophe happens, it is vital that not only emergency rescue teams are prepared, but also that there is a functional communication network infrastructure. Hence, in order to prevent additional losses of human lives, it is crucial that network operators are able to deploy an emergency infrastructure as fast as possible. In this sense, the deployment of an intelligent, mobile, and adaptable network, through the usage of drones—unmanned aerial vehicles—is being considered as one possible alternative for emergency situations. In this paper, an intelligent solution based on reinforcement learning is proposed in order to find the best position of multiple drone small cells (DSCs) in an emergency scenario. The proposed solution’s main goal is to maximize the amount of users covered by the system, while drones are limited by both backhaul and radio access network constraints. Results show that the proposed Q-learning solution largely outperforms all other approaches with respect to all metrics considered. Hence, intelligent DSCs are considered a good alternative in order to enable the rapid and efficient deployment of an emergency communication network

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore