196,856 research outputs found

    Studying the Usage of Text-To-Text Transfer Transformer to Support Code-Related Tasks

    Full text link
    Deep learning (DL) techniques are gaining more and more attention in the software engineering community. They have been used to support several code-related tasks, such as automatic bug fixing and code comments generation. Recent studies in the Natural Language Processing (NLP) field have shown that the Text-To-Text Transfer Transformer (T5) architecture can achieve state-of-the-art performance for a variety of NLP tasks. The basic idea behind T5 is to first pre-train a model on a large and generic dataset using a self-supervised task ( e.g: filling masked words in sentences). Once the model is pre-trained, it is fine-tuned on smaller and specialized datasets, each one related to a specific task ( e.g: language translation, sentence classification). In this paper, we empirically investigate how the T5 model performs when pre-trained and fine-tuned to support code-related tasks. We pre-train a T5 model on a dataset composed of natural language English text and source code. Then, we fine-tune such a model by reusing datasets used in four previous works that used DL techniques to: (i) fix bugs, (ii) inject code mutants, (iii) generate assert statements, and (iv) generate code comments. We compared the performance of this single model with the results reported in the four original papers proposing DL-based solutions for those four tasks. We show that our T5 model, exploiting additional data for the self-supervised pre-training phase, can achieve performance improvements over the four baselines.Comment: Accepted to the 43rd International Conference on Software Engineering (ICSE 2021

    Improving Natural Language Interaction with Robots Using Advice

    Full text link
    Over the last few years, there has been growing interest in learning models for physically grounded language understanding tasks, such as the popular blocks world domain. These works typically view this problem as a single-step process, in which a human operator gives an instruction and an automated agent is evaluated on its ability to execute it. In this paper we take the first step towards increasing the bandwidth of this interaction, and suggest a protocol for including advice, high-level observations about the task, which can help constrain the agent's prediction. We evaluate our approach on the blocks world task, and show that even simple advice can help lead to significant performance improvements. To help reduce the effort involved in supplying the advice, we also explore model self-generated advice which can still improve results.Comment: Accepted as a short paper at NAACL 2019 (8 pages

    SALSA-TEXT : self attentive latent space based adversarial text generation

    Full text link
    Inspired by the success of self attention mechanism and Transformer architecture in sequence transduction and image generation applications, we propose novel self attention-based architectures to improve the performance of adversarial latent code- based schemes in text generation. Adversarial latent code-based text generation has recently gained a lot of attention due to their promising results. In this paper, we take a step to fortify the architectures used in these setups, specifically AAE and ARAE. We benchmark two latent code-based methods (AAE and ARAE) designed based on adversarial setups. In our experiments, the Google sentence compression dataset is utilized to compare our method with these methods using various objective and subjective measures. The experiments demonstrate the proposed (self) attention-based models outperform the state-of-the-art in adversarial code-based text generation.Comment: 10 pages, 3 figures, under review at ICLR 201
    • …
    corecore