16,060 research outputs found

    Continuous maintenance and the future ā€“ Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ā€˜big dataā€™ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Spatiotemporal Splitting of Distribution Networks into Self-Healing Resilient Microgrids using an Adjustable Interval Optimization

    Get PDF
    The distribution networks can convincingly break down into small-scale self-controllable areas, namely microgrids to substitute microgrids arrangements for effectively coping with any perturbations. To achieve these targets, this paper examines a novel spatiotemporal algorithm to split the existing network into a set of self-healing microgrids. The main intention in the grid-tied state is to maximize the microgrids profit while equilibrating load and generation at the islanded state by sectionalizing on-fault area, executing resources rescheduling, network reconfiguration and load shedding when the main grid is interrupted. The proposed problem is formulated as an exact computationally efficient mixed integer linear programming problem relying on the column & constraint generation framework and an adjustable interval optimization is envisaged to make the microgrids less susceptible against renewables variability. Finally, the effectiveness of the proposed model is adequately assured by performing a realistic case study.Ā© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity networkā€”the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Multi Agent System for Machine Learning Under Uncertainty in Cyber Physical Manufacturing System

    Get PDF
    Recent advancement in predictive machine learning has led to its application in various use cases in manufacturing. Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it. While accuracy is important, focusing primarily on it poses an overfitting danger, exposing manufacturers to risk, ultimately hindering the adoption of these techniques. In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty in a cyber-physical manufacturing system (CPMS) scenario. Then, we propose a multi-agent system architecture which leverages probabilistic machine learning as a means of achieving such criteria. We propose possible scenarios for which our architecture is useful and discuss future work. Experimentally, we implement Bayesian Neural Networks for multi-tasks classification on a public dataset for the real-time condition monitoring of a hydraulic system and demonstrate the usefulness of the system by evaluating the probability of a prediction being accurate given its uncertainty. We deploy these models using our proposed agent-based framework and integrate web visualisation to demonstrate its real-time feasibility
    • ā€¦
    corecore