12,740 research outputs found

    Dynamical laser spike processing

    Get PDF
    Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved "spiking" of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate that graphene-coupled laser systems offer a unified low-level spike optical processing paradigm that goes well beyond previously studied laser dynamics. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation---fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system, but the addition of graphene leads to a number of advantages which stem from its unique properties, including high absorption and fast carrier relaxation. These could lead to significant speed and efficiency improvements in unconventional laser processing devices, and ongoing research on graphene microfabrication promises compatibility with integrated laser platforms.Comment: 13 pages, 7 figure

    EELBERT: Tiny Models through Dynamic Embeddings

    Full text link
    We introduce EELBERT, an approach for compression of transformer-based models (e.g., BERT), with minimal impact on the accuracy of downstream tasks. This is achieved by replacing the input embedding layer of the model with dynamic, i.e. on-the-fly, embedding computations. Since the input embedding layer accounts for a significant fraction of the model size, especially for the smaller BERT variants, replacing this layer with an embedding computation function helps us reduce the model size significantly. Empirical evaluation on the GLUE benchmark shows that our BERT variants (EELBERT) suffer minimal regression compared to the traditional BERT models. Through this approach, we are able to develop our smallest model UNO-EELBERT, which achieves a GLUE score within 4% of fully trained BERT-tiny, while being 15x smaller (1.2 MB) in size.Comment: EMNLP 2023, Industry Track 9 pages, 2 figures, 5 table

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF
    corecore