173 research outputs found

    Gridbot: An autonomous robot controlled by a Spiking Neural Network mimicking the brain's navigational system

    Full text link
    It is true that the "best" neural network is not necessarily the one with the most "brain-like" behavior. Understanding biological intelligence, however, is a fundamental goal for several distinct disciplines. Translating our understanding of intelligence to machines is a fundamental problem in robotics. Propelled by new advancements in Neuroscience, we developed a spiking neural network (SNN) that draws from mounting experimental evidence that a number of individual neurons is associated with spatial navigation. By following the brain's structure, our model assumes no initial all-to-all connectivity, which could inhibit its translation to a neuromorphic hardware, and learns an uncharted territory by mapping its identified components into a limited number of neural representations, through spike-timing dependent plasticity (STDP). In our ongoing effort to employ a bioinspired SNN-controlled robot to real-world spatial mapping applications, we demonstrate here how an SNN may robustly control an autonomous robot in mapping and exploring an unknown environment, while compensating for its own intrinsic hardware imperfections, such as partial or total loss of visual input.Comment: 8 pages, 3 Figures, International Conference on Neuromorphic Systems (ICONS 2018

    Coordinated Robot Navigation via Hierarchical Clustering

    Get PDF
    We introduce the use of hierarchical clustering for relaxed, deterministic coordination and control of multiple robots. Traditionally an unsupervised learning method, hierarchical clustering offers a formalism for identifying and representing spatially cohesive and segregated robot groups at different resolutions by relating the continuous space of configurations to the combinatorial space of trees. We formalize and exploit this relation, developing computationally effective reactive algorithms for navigating through the combinatorial space in concert with geometric realizations for a particular choice of hierarchical clustering method. These constructions yield computationally effective vector field planners for both hierarchically invariant as well as transitional navigation in the configuration space. We apply these methods to the centralized coordination and control of nn perfectly sensed and actuated Euclidean spheres in a dd-dimensional ambient space (for arbitrary nn and dd). Given a desired configuration supporting a desired hierarchy, we construct a hybrid controller which is quadratic in nn and algebraic in dd and prove that its execution brings all but a measure zero set of initial configurations to the desired goal with the guarantee of no collisions along the way.Comment: 29 pages, 13 figures, 8 tables, extended version of a paper in preparation for submission to a journa

    Multi-contact tactile exploration and interaction with unknown objects

    Get PDF
    Humans rely on the sense of touch in almost every aspect of daily life, whether to tie shoelaces, place fingertips on a computer keyboard or find keys inside a bag. With robots moving into human-centered environment, tactile exploration becomes more and more important as vision may be occluded easily by obstacles or fail because of different illumination conditions. Traditional approaches mostly rely on position control for manipulating objects and are adapted to single grippers and known objects. New sensors make it possible to extend the control to tackle problems unsolved before: handling unknown objects and discovering local features on their surface. This thesis tackles the problem of controlling a robot which makes multiple contacts with an unknown environment. Generating and keeping multiple contacts points on different parts of the robot fingers during exploration is an essential feature that distinguishes our work from other haptic exploration work in the literature, where contacts are usually limited to one or more fingertips. In the first part of this thesis, we address the problem of exploring partially known surfaces and objects for modeling and identification. In multiple scenarios, control and exploration strategies are developed to compliantly follow the surface or contour of a surface with robotic fingers. Whereas the methods developed in the first part of this thesis perform well on objects with limited size and variation in shape, the second part of the thesis is devoted to the development of a controller that maximizes contact with unknown surfaces of any shape and size. Maximizing contact allows to gather information more rapidly and also to create stable grasps. To this end, we develop an algorithm based on the task-space formulation to quickly handle the control in torque of an actively compliant robot while keeping constraints, particularly on contact forces. We also develop a strategy to maximize the surface in contact, given only the current state of contact, i.e. without prior information on the object or surface. In the third part of the thesis, an additional application of the developed hand controller is explored. The problem of autonomous grasping using only tactile data is tackled. The arm motion is generated according to search and grasping strategies implemented with Dynamical Systems (DS). We extend existing approaches to locally modulate dynamical systems (DS) to enable sensing-based modulation, so as to change the dynamics of motion depending on task progress. This allows to generate fast and autonomous object localization and grasping in one flexible framework. We also apply this algorithm to teach a robot how to react to collisions in order to navigate between obstacles while reaching

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    The Road to General Intelligence

    Get PDF
    Humans have always dreamed of automating laborious physical and intellectual tasks, but the latter has proved more elusive than naively suspected. Seven decades of systematic study of Artificial Intelligence have witnessed cycles of hubris and despair. The successful realization of General Intelligence (evidenced by the kind of cross-domain flexibility enjoyed by humans) will spawn an industry worth billions and transform the range of viable automation tasks.The recent notable successes of Machine Learning has lead to conjecture that it might be the appropriate technology for delivering General Intelligence. In this book, we argue that the framework of machine learning is fundamentally at odds with any reasonable notion of intelligence and that essential insights from previous decades of AI research are being forgotten. We claim that a fundamental change in perspective is required, mirroring that which took place in the philosophy of science in the mid 20th century. We propose a framework for General Intelligence, together with a reference architecture that emphasizes the need for anytime bounded rationality and a situated denotational semantics. We given necessary emphasis to compositional reasoning, with the required compositionality being provided via principled symbolic-numeric inference mechanisms based on universal constructions from category theory. • Details the pragmatic requirements for real-world General Intelligence. • Describes how machine learning fails to meet these requirements. • Provides a philosophical basis for the proposed approach. • Provides mathematical detail for a reference architecture. • Describes a research program intended to address issues of concern in contemporary AI. The book includes an extensive bibliography, with ~400 entries covering the history of AI and many related areas of computer science and mathematics.The target audience is the entire gamut of Artificial Intelligence/Machine Learning researchers and industrial practitioners. There are a mixture of descriptive and rigorous sections, according to the nature of the topic. Undergraduate mathematics is in general sufficient. Familiarity with category theory is advantageous for a complete understanding of the more advanced sections, but these may be skipped by the reader who desires an overall picture of the essential concepts This is an open access book

    Clustering-Based Robot Navigation and Control

    Get PDF
    In robotics, it is essential to model and understand the topologies of configuration spaces in order to design provably correct motion planners. The common practice in motion planning for modelling configuration spaces requires either a global, explicit representation of a configuration space in terms of standard geometric and topological models, or an asymptotically dense collection of sample configurations connected by simple paths, capturing the connectivity of the underlying space. This dissertation introduces the use of clustering for closing the gap between these two complementary approaches. Traditionally an unsupervised learning method, clustering offers automated tools to discover hidden intrinsic structures in generally complex-shaped and high-dimensional configuration spaces of robotic systems. We demonstrate some potential applications of such clustering tools to the problem of feedback motion planning and control. The first part of the dissertation presents the use of hierarchical clustering for relaxed, deterministic coordination and control of multiple robots. We reinterpret this classical method for unsupervised learning as an abstract formalism for identifying and representing spatially cohesive and segregated robot groups at different resolutions, by relating the continuous space of configurations to the combinatorial space of trees. Based on this new abstraction and a careful topological characterization of the associated hierarchical structure, a provably correct, computationally efficient hierarchical navigation framework is proposed for collision-free coordinated motion design towards a designated multirobot configuration via a sequence of hierarchy-preserving local controllers. The second part of the dissertation introduces a new, robot-centric application of Voronoi diagrams to identify a collision-free neighborhood of a robot configuration that captures the local geometric structure of a configuration space around the robot’s instantaneous position. Based on robot-centric Voronoi diagrams, a provably correct, collision-free coverage and congestion control algorithm is proposed for distributed mobile sensing applications of heterogeneous disk-shaped robots; and a sensor-based reactive navigation algorithm is proposed for exact navigation of a disk-shaped robot in forest-like cluttered environments. These results strongly suggest that clustering is, indeed, an effective approach for automatically extracting intrinsic structures in configuration spaces and that it might play a key role in the design of computationally efficient, provably correct motion planners in complex, high-dimensional configuration spaces

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    • …
    corecore