685 research outputs found

    HIGhER : Improving instruction following with Hindsight Generation for Experience Replay

    Get PDF
    Language creates a compact representation of the world and allows the description of unlimited situations and objectives through compositionality. While these characterizations may foster instructing, conditioning or structuring interactive agent behavior, it remains an open-problem to correctly relate language understanding and reinforcement learning in even simple instruction following scenarios. This joint learning problem is alleviated through expert demonstrations, auxiliary losses, or neural inductive biases. In this paper, we propose an orthogonal approach called Hindsight Generation for Experience Replay (HIGhER) that extends the Hindsight Experience Replay (HER) approach to the language-conditioned policy setting. Whenever the agent does not fulfill its instruction, HIGhER learns to output a new directive that matches the agent trajectory, and it relabels the episode with a positive reward. To do so, HIGhER learns to map a state into an instruction by using past successful trajectories, which removes the need to have external expert interventions to relabel episodes as in vanilla HER. We show the efficiency of our approach in the BabyAI environment, and demonstrate how it complements other instruction following methods.Comment: Accepted at ADPRL'2

    Grounding Language to Autonomously-Acquired Skills via Goal Generation

    Get PDF
    We are interested in the autonomous acquisition of repertoires of skills. Language-conditioned reinforcement learning (LC-RL) approaches are great tools in this quest, as they allow to express abstract goals as sets of constraints on the states. However, most LC-RL agents are not autonomous and cannot learn without external instructions and feedback. Besides, their direct language condition cannot account for the goal-directed behavior of pre-verbal infants and strongly limits the expression of behavioral diversity for a given language input. To resolve these issues, we propose a new conceptual approach to language-conditioned RL: the Language-Goal-Behavior architecture (LGB). LGB decouples skill learning and language grounding via an intermediate semantic representation of the world. To showcase the properties of LGB, we present a specific implementation called DECSTR. DECSTR is an intrinsically motivated learning agent endowed with an innate semantic representation describing spatial relations between physical objects. In a first stage (G -> B), it freely explores its environment and targets self-generated semantic configurations. In a second stage (L -> G), it trains a language-conditioned goal generator to generate semantic goals that match the constraints expressed in language-based inputs. We showcase the additional properties of LGB w.r.t. both an end-to-end LC-RL approach and a similar approach leveraging non-semantic, continuous intermediate representations. Intermediate semantic representations help satisfy language commands in a diversity of ways, enable strategy switching after a failure and facilitate language grounding.Comment: Published at ICLR 202

    Explainability in Deep Reinforcement Learning

    Get PDF
    A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems.Comment: Article accepted at Knowledge-Based System

    Robotic Skill Acquisition via Instruction Augmentation with Vision-Language Models

    Full text link
    In recent years, much progress has been made in learning robotic manipulation policies that follow natural language instructions. Such methods typically learn from corpora of robot-language data that was either collected with specific tasks in mind or expensively re-labelled by humans with rich language descriptions in hindsight. Recently, large-scale pretrained vision-language models (VLMs) like CLIP or ViLD have been applied to robotics for learning representations and scene descriptors. Can these pretrained models serve as automatic labelers for robot data, effectively importing Internet-scale knowledge into existing datasets to make them useful even for tasks that are not reflected in their ground truth annotations? To accomplish this, we introduce Data-driven Instruction Augmentation for Language-conditioned control (DIAL): we utilize semi-supervised language labels leveraging the semantic understanding of CLIP to propagate knowledge onto large datasets of unlabelled demonstration data and then train language-conditioned policies on the augmented datasets. This method enables cheaper acquisition of useful language descriptions compared to expensive human labels, allowing for more efficient label coverage of large-scale datasets. We apply DIAL to a challenging real-world robotic manipulation domain where 96.5% of the 80,000 demonstrations do not contain crowd-sourced language annotations. DIAL enables imitation learning policies to acquire new capabilities and generalize to 60 novel instructions unseen in the original dataset

    Grounding Language to Autonomously-Acquired Skills via Goal Generation

    Get PDF
    International audienceWe are interested in the autonomous acquisition of repertoires of skills. Language-conditioned reinforcement learning (LC-RL) approaches are great tools in this quest, as they allow to express abstract goals as sets of constraints on the states. However, most LC-RL agents are not autonomous and cannot learn without external instructions and feedback. Besides, their direct language condition cannot account for the goal-directed behavior of pre-verbal infants and strongly limits the expression of behavioral diversity for a given language input. To resolve these issues, we propose a new conceptual approach to language-conditioned RL: the Language-Goal-Behavior architecture (LGB). LGB decouples skill learning and language grounding via an intermediate semantic representation of the world. To showcase the properties of LGB, we present a specific implementation called DECSTR. DECSTR is an intrinsically motivated learning agent endowed with an innate semantic representation describing spatial relations between physical objects. In a first stage (G -> B), it freely explores its environment and targets self-generated semantic configurations. In a second stage (L -> G), it trains a language-conditioned goal generator to generate semantic goals that match the constraints expressed in language-based inputs. We showcase the additional properties of LGB w.r.t. both an end-to-end LC-RL approach and a similar approach leveraging non-semantic, continuous intermediate representations. Intermediate semantic representations help satisfy language commands in a diversity of ways, enable strategy switching after a failure and facilitate language grounding

    Explainability in Deep Reinforcement Learning

    Get PDF
    International audienceA large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems

    Learning Rewards from Linguistic Feedback

    Full text link
    We explore unconstrained natural language feedback as a learning signal for artificial agents. Humans use rich and varied language to teach, yet most prior work on interactive learning from language assumes a particular form of input (e.g., commands). We propose a general framework which does not make this assumption, using aspect-based sentiment analysis to decompose feedback into sentiment about the features of a Markov decision process. We then perform an analogue of inverse reinforcement learning, regressing the sentiment on the features to infer the teacher's latent reward function. To evaluate our approach, we first collect a corpus of teaching behavior in a cooperative task where both teacher and learner are human. We implement three artificial learners: sentiment-based "literal" and "pragmatic" models, and an inference network trained end-to-end to predict latent rewards. We then repeat our initial experiment and pair them with human teachers. All three successfully learn from interactive human feedback. The sentiment models outperform the inference network, with the "pragmatic" model approaching human performance. Our work thus provides insight into the information structure of naturalistic linguistic feedback as well as methods to leverage it for reinforcement learning.Comment: 9 pages, 4 figures. AAAI '2

    Autotelic Agents with Intrinsically Motivated Goal-Conditioned Reinforcement Learning: a Short Survey

    Full text link
    Building autonomous machines that can explore open-ended environments, discover possible interactions and build repertoires of skills is a general objective of artificial intelligence. Developmental approaches argue that this can only be achieved by autotelicautotelic agentsagents: intrinsically motivated learning agents that can learn to represent, generate, select and solve their own problems. In recent years, the convergence of developmental approaches with deep reinforcement learning (RL) methods has been leading to the emergence of a new field: developmentaldevelopmental reinforcementreinforcement learninglearning. Developmental RL is concerned with the use of deep RL algorithms to tackle a developmental problem -- the intrinsicallyintrinsically motivatedmotivated acquisitionacquisition ofof openopen-endedended repertoiresrepertoires ofof skillsskills. The self-generation of goals requires the learning of compact goal encodings as well as their associated goal-achievement functions. This raises new challenges compared to standard RL algorithms originally designed to tackle pre-defined sets of goals using external reward signals. The present paper introduces developmental RL and proposes a computational framework based on goal-conditioned RL to tackle the intrinsically motivated skills acquisition problem. It proceeds to present a typology of the various goal representations used in the literature, before reviewing existing methods to learn to represent and prioritize goals in autonomous systems. We finally close the paper by discussing some open challenges in the quest of intrinsically motivated skills acquisition

    Deep reinforcement learning for multi-modal embodied navigation

    Full text link
    Ce travail se concentre sur une tĂąche de micro-navigation en plein air oĂč le but est de naviguer vers une adresse de rue spĂ©cifiĂ©e en utilisant plusieurs modalitĂ©s (par exemple, images, texte de scĂšne et GPS). La tĂąche de micro-navigation extĂ©rieure s’avĂšre etre un dĂ©fi important pour de nombreuses personnes malvoyantes, ce que nous dĂ©montrons Ă  travers des entretiens et des Ă©tudes de marchĂ©, et nous limitons notre dĂ©finition des problĂšmes Ă  leurs besoins. Nous expĂ©rimentons d’abord avec un monde en grille partiellement observable (Grid-Street et Grid City) contenant des maisons, des numĂ©ros de rue et des rĂ©gions navigables. Ensuite, nous introduisons le Environnement de Trottoir pour la Navigation Visuelle (ETNV), qui contient des images panoramiques avec des boĂźtes englobantes pour les numĂ©ros de maison, les portes et les panneaux de nom de rue, et des formulations pour plusieurs tĂąches de navigation. Dans SEVN, nous formons un modĂšle de politique pour fusionner des observations multimodales sous la forme d’images Ă  rĂ©solution variable, de texte visible et de donnĂ©es GPS simulĂ©es afin de naviguer vers une porte d’objectif. Nous entraĂźnons ce modĂšle en utilisant l’algorithme d’apprentissage par renforcement, Proximal Policy Optimization (PPO). Nous espĂ©rons que cette thĂšse fournira une base pour d’autres recherches sur la crĂ©ation d’agents pouvant aider les membres de la communautĂ© des gens malvoyantes Ă  naviguer le monde.This work focuses on an Outdoor Micro-Navigation (OMN) task in which the goal is to navigate to a specified street address using multiple modalities including images, scene-text, and GPS. This task is a significant challenge to many Blind and Visually Impaired (BVI) people, which we demonstrate through interviews and market research. To investigate the feasibility of solving this task with Deep Reinforcement Learning (DRL), we first introduce two partially observable grid-worlds, Grid-Street and Grid City, containing houses, street numbers, and navigable regions. In these environments, we train an agent to find specific houses using local observations under a variety of training procedures. We parameterize our agent with a neural network and train using reinforcement learning methods. Next, we introduce the Sidewalk Environment for Visual Navigation (SEVN), which contains panoramic images with labels for house numbers, doors, and street name signs, and formulations for several navigation tasks. In SEVN, we train another neural network model using Proximal Policy Optimization (PPO) to fuse multi-modal observations in the form of variable resolution images, visible text, and simulated GPS data, and to use this representation to navigate to goal doors. Our best model used all available modalities and was able to navigate to over 100 goals with an 85% success rate. We found that models with access to only a subset of these modalities performed significantly worse, supporting the need for a multi-modal approach to the OMN task. We hope that this thesis provides a foundation for further research into the creation of agents to assist members of the BVI community to safely navigate
    • 

    corecore