99 research outputs found

    The Gaussian normal basis and its trace basis over finite fields

    Get PDF
    AbstractIt is well known that normal bases are useful for implementations of finite fields in various applications including coding theory, cryptography, signal processing, and so on. In particular, optimal normal bases are desirable. When no optimal normal basis exists, it is useful to have normal bases with low complexity. In this paper, we study the type k(⩾1) Gaussian normal basis N of the finite field extension Fqn/Fq, which is a classical normal basis with low complexity. By studying the multiplication table of N, we obtain the dual basis of N and the trace basis of N via arbitrary medium subfields Fqm/Fq with m|n and 1⩽m⩽n. And then we determine all self-dual Gaussian normal bases. As an application, we obtain the precise multiplication table and the complexity of the type 2 Gaussian normal basis and then determine all optimal type 2 Gaussian normal bases

    Construction of Self-Dual Integral Normal Bases in Abelian Extensions of Finite and Local Fields

    Get PDF
    Let F/EF/E be a finite Galois extension of fields with abelian Galois group Γ\Gamma. A self-dual normal basis for F/EF/E is a normal basis with the additional property that TrF/E(g(x),h(x))=δg,hTr_{F/E}(g(x),h(x))=\delta_{g,h} for g,h∈Γg,h\in\Gamma. Bayer-Fluckiger and Lenstra have shown that when char(E)≠2char(E)\neq 2, then FF admits a self-dual normal basis if and only if [F:E][F:E] is odd. If F/EF/E is an extension of finite fields and char(E)=2char(E)=2, then FF admits a self-dual normal basis if and only if the exponent of Γ\Gamma is not divisible by 44. In this paper we construct self-dual normal basis generators for finite extensions of finite fields whenever they exist. Now let KK be a finite extension of \Q_p, let L/KL/K be a finite abelian Galois extension of odd degree and let \bo_L be the valuation ring of LL. We define AL/KA_{L/K} to be the unique fractional \bo_L-ideal with square equal to the inverse different of L/KL/K. It is known that a self-dual integral normal basis exists for AL/KA_{L/K} if and only if L/KL/K is weakly ramified. Assuming p≠2p\neq 2, we construct such bases whenever they exist

    Geometric non-vanishing

    Full text link
    We consider LL-functions attached to representations of the Galois group of the function field of a curve over a finite field. Under mild tameness hypotheses, we prove non-vanishing results for twists of these LL-functions by characters of order prime to the characteristic of the ground field and by certain representations with solvable image. We also allow local restrictions on the twisting representation at finitely many places. Our methods are geometric, and include the Riemann-Roch theorem, the cohomological interpretation of LL-functions, and some monodromy calculations of Katz. As an application, we prove a result which allows one to deduce the conjecture of Birch and Swinnerton-Dyer for non-isotrivial elliptic curves over function fields whose LL-function vanishes to order at most 1 from a suitable Gross-Zagier formula.Comment: 46 pages. New version corrects minor errors. To appear in Inventiones Mat

    On self-dual MRD codes

    Full text link
    We determine the automorphism group of Gabidulin codes of full length and characterise when these codes are equivalent to self-dual codes.Comment: Improved exposition according to the referees' comment

    New results on linear permutation polynomials with coefficients in a subfield

    Full text link
    Some families of linear permutation polynomials of Fqms\mathbb{F}_{q^{ms}} with coefficients in Fqm\mathbb{F}_{q^{m}} are explicitly described (via conditions on their coefficients) as isomorphic images of classical subgroups of the general linear group of degree mm over the ring Fq[x]⟨xs−1⟩\frac{\mathbb{F}_{q}[x]}{\left\langle x^{s}-1 \right\rangle}. In addition, the sizes of some of these families are computed. Finally, several criteria to construct linear permutation polynomials of Fq2p\mathbb{F}_{q^{2p}} (where pp is a prime number) with prescribed coefficients in Fq2\mathbb{F}_{q^{2}} are given. Examples illustrating the main results are presented

    Decoding and constructions of codes in rank and Hamming metric

    Get PDF
    As coding theory plays an important role in data transmission, decoding algorithms for new families of error correction codes are of great interest. This dissertation is dedicated to the decoding algorithms for new families of maximum rank distance (MRD) codes including additive generalized twisted Gabidulin (AGTG) codes and Trombetti-Zhou (TZ) codes, decoding algorithm for Gabidulin codes beyond half the minimum distance and also encoding and decoding algorithms for some new optimal rank metric codes with restrictions. We propose an interpolation-based decoding algorithm to decode AGTG codes where the decoding problem is reduced to the problem of solving a projective polynomial equation of the form q(x) = xqu+1 +bx+a = 0 for a,b ∈ Fqm. We investigate the zeros of q(x) when gcd(u,m)=1 and proposed a deterministic algorithm to solve a linearized polynomial equation which has a close connection to the zeros of q(x). An efficient polynomial-time decoding algorithm is proposed for TZ codes. The interpolation-based decoding approach transforms the decoding problem of TZ codes to the problem of solving a quadratic polynomial equation. Two new communication models are defined and using our models we manage to decode Gabidulin codes beyond half the minimum distance by one unit. Our models also allow us to improve the complexity for decoding GTG and AGTG codes. Besides working on MRD codes, we also work on restricted optimal rank metric codes including symmetric, alternating and Hermitian rank metric codes. Both encoding and decoding algorithms for these optimal families are proposed. In all the decoding algorithms presented in this thesis, the properties of Dickson matrix and the BM algorithm play crucial roles. We also touch two problems in Hamming metric. For the first problem, some cryptographic properties of Welch permutation polynomial are investigated and we use these properties to determine the weight distribution of a binary linear codes with few weights. For the second one, we introduce two new subfamilies for maximum weight spectrum codes with respect to their weight distribution and then we investigate their properties.Doktorgradsavhandlin

    On interpolation-based decoding of a class of maximum rank distance codes

    Get PDF
    In this paper we present an interpolation-based decoding algorithm to decode a family of maximum rank distance codes proposed recently by Trombetti and Zhou. We employ the properties of the Dickson matrix associated with a linearized polynomial with a given rank and the modified Berlekamp-Massey algorithm in decoding. When the rank of the error vector attains the unique decoding radius, the problem is converted to solving a quadratic polynomial, which ensures that the proposed decoding algorithm has polynomial-time complexity.acceptedVersio
    • …
    corecore