5,366 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Time constrained fault tolerance and management framework for k-connected distributed wireless sensor networks based on composite event detection

    Get PDF
    Wireless sensor nodes themselves are exceptionally complex systems where a variety of components interact in a complex way. In enterprise scenarios it becomes highly important to hide the details of the underlying sensor networks from the applications and to guarantee a minimum level of reliability of the system. One of the challenges faced to achieve this level of reliability is to overcome the failures frequently faced by sensor networks due to their tight integration with the environment. Failures can generate false information, which may trigger incorrect business processes, resulting in additional costs. Sensor networks are inherently fault prone due to the shared wireless communication medium. Thus, sensor nodes can lose synchrony and their programs can reach arbitrary states. Since on-site maintenance is not feasible, sensor network applications should be local and communication-efficient self-healing. Also, as per my knowledge, no such general framework exist that addresses all the fault issues one may encounter in a WSN, based on the extensive, exhaustive and comprehensive literature survey in the related areas of research. As one of the main goals of enterprise applications is to reduce the costs of business processes, a complete and more general Fault Tolerance and management framework for a general WSN, irrespective of the node types and deployment conditions is proposed which would help to mitigate the propagation of failures in a business environment, reduce the installation and maintenance costs and to gain deployment flexibility to allow for unobtrusive installation

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    A survey on fault diagnosis in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) often consist of hundreds of sensor nodes that may be deployed in relatively harsh and complex environments. In views of hardware cost, sensor nodes always adopt relatively cheap chips, which makes these nodes become error-prone or faulty in the course of their operation. Natural factors and electromagnetic interference could also influence the performance of the WSNs. When sensor nodes become faulty, they may have died which means they cannot communicate with other members in the wireless network, they may be still alive but produce incorrect data, they may be unstable jumping between normal state and faulty state. To improve data quality, shorten response time, strengthen network security, and prolong network lifespan, many studies have focused on fault diagnosis. This survey paper classifies fault diagnosis methods in recent five years into three categories based on decision centers and key attributes of employed algorithms: centralized approaches, distributed approaches, and hybrid approaches. As all these studies have specific goals and limitations, this paper tries to compare them, lists their merits and limits, and propose potential research directions based on established methods and theories

    A Framework and Classification for Fault Detection Approaches in Wireless Sensor Networks with an Energy Efficiency Perspective

    Get PDF
    Wireless Sensor Networks (WSNs) are more and more considered a key enabling technology for the realisation of the Internet of Things (IoT) vision. With the long term goal of designing fault-tolerant IoT systems, this paper proposes a fault detection framework for WSNs with the perspective of energy efficiency to facilitate the design of fault detection methods and the evaluation of their energy efficiency. Following the same design principle of the fault detection framework, the paper proposes a classification for fault detection approaches. The classification is applied to a number of fault detection approaches for the comparison of several characteristics, namely, energy efficiency, correlation model, evaluation method, and detection accuracy. The design guidelines given in this paper aim at providing an insight into better design of energy-efficient detection approaches in resource-constraint WSNs

    Monitoring of Wireless Sensor Networks

    Get PDF
    corecore