81 research outputs found

    Distributed scheduling with end-to-end compensation in multihop ad hoc networks

    Get PDF
    In this paper, we investigate the problem of providing QoS to end-to-end flows in multihop ad hoc networks with channel errors through packet scheduling. Each flow is associated with some QoS requirement, which is requested and granted in the form of a desired service rate. The achieved rate is estimated at the destination and fed back to the source periodically. Both the desired rate and achieved rate of a multihop flow are piggybacked on the packets of the flow and propagated from the source node to all its downstream relaying nodes. With such information, a compensation-capable scheduling algorithm originally designed for infrastructured wireless networks can be adapted to each ad hoc node for compensating a lagging flow, i.e., a flow with the achieved rate smaller than the desired rate. We propose the feedback and propagation mechanism as an end-to-end compensation framework, which is the key contribution of this work. We use BGFS-EBA, a scheduling algorithm for infrastructured wireless networks, as an example to demonstrate how such an algorithm is adapted to ad hoc networks within the proposed framework. Our simulation results show that the proposed mechanism maintains outcome fairness and compensate flows that suffer sporadic bursty channel errors effectively. © 2008 IEEE.published_or_final_versionThe 19th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Cannes, France, 15-18 September 2008. In Proceedings of 19th IEEE PIMRC, 2008, p. 1-

    Fairness in a data center

    Get PDF
    Existing data centers utilize several networking technologies in order to handle the performance requirements of different workloads. Maintaining diverse networking technologies increases complexity and is not cost effective. This results in the current trend to converge all traffic into a single networking fabric. Ethernet is both cost-effective and ubiquitous, and as such it has been chosen as the technology of choice for the converged fabric. However, traditional Ethernet does not satisfy the needs of all traffic workloads, for the most part, due to its lossy nature and, therefore, has to be enhanced to allow for full convergence. The resulting technology, Data Center Bridging (DCB), is a new set of standards defined by the IEEE to make Ethernet lossless even in the presence of congestion. As with any new networking technology, it is critical to analyze how the different protocols within DCB interact with each other as well as how each protocol interacts with existing technologies in other layers of the protocol stack. This dissertation presents two novel schemes that address critical issues in DCB networks: fairness with respect to packet lengths and fairness with respect to flow control and bandwidth utilization. The Deficit Round Robin with Adaptive Weight Control (DRR-AWC) algorithm actively monitors the incoming streams and adjusts the scheduling weights of the outbound port. The algorithm was implemented on a real DCB switch and shown to increase fairness for traffic consisting of mixed-length packets. Targeted Priority-based Flow Control (TPFC) provides a hop-by-hop flow control mechanism that restricts the flow of aggressor streams while allowing victim streams to continue unimpeded. Two variants of the targeting mechanism within TPFC are presented and their performance evaluated through simulation

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Routing Strategies for Capacity Enhancement in Multi-hop Wireless Ad Hoc Networks

    Get PDF
    This thesis examines a Distributed Interference Impact Probing (DIIP) strategy for Wireless Ad hoc Networks (WANETs), using a novel cross-layer Minimum Impact Routing (MIR) protocol. Perfonnance is judged in tenns of interference reduction ratio, efficiency, and system and user capacity, which are calculated based on the measurement of Disturbed Nodes (DN). A large number of routing algorithms have been proposed with distinctive features aimed to overcome WANET's fundamental challenges, such as routing over a dynamic topology, scheduling broadcast signals using dynamic Media Access Control (MAC), and constraints on network scalability. However, the scalability problem ofWANET cannot simply adapt the frequency reuse mechanism designed for traditional stationary cellular networks due to the relay burden, and there is no single comprehensive algorithm proposed for it. DIIP enhances system and user capacity using a cross layer routing algorithm, MIR, using feedback from DIIP to balance transmit power in order to control hop length, which consequently changes the number of relays along the path. This maximizes the number of simultaneous transmitting nodes, and minimizes the interference impact, i.e. measured in tenns of 'disturbed nodes'. The perfonnance of MIR is examined compared with simple shortest-path routing. A WANET simulation model is configured to simulate both routing algorithms under multiple scenarios. The analysis has shown that once the transmitting range of a node changes, the total number of disturbed nodes along a path changes accordingly, hence the system and user capacity varies with interference impact variation. By carefully selecting a suitable link length, the neighbouring node density can be adjusted to reduce the total number of DN, and thereby allowing a higher spatial reuse ratio. In this case the system capacity can increase significantly as the number of nodes increases. In contrast, if the link length is chosen regardless ofthe negative impact of interference, capacity decreases. In addition, MIR diverts traffic from congested areas, such as the central part of a network or bottleneck points
    • …
    corecore