261 research outputs found

    Latency Optimized Asynchronous Early Output Ripple Carry Adder based on Delay-Insensitive Dual-Rail Data Encoding

    Full text link
    Asynchronous circuits employing delay-insensitive codes for data representation i.e. encoding and following a 4-phase return-to-zero protocol for handshaking are generally robust. Depending upon whether a single delay-insensitive code or multiple delay-insensitive code(s) are used for data encoding, the encoding scheme is called homogeneous or heterogeneous delay-insensitive data encoding. This article proposes a new latency optimized early output asynchronous ripple carry adder (RCA) that utilizes single-bit asynchronous full adders (SAFAs) and dual-bit asynchronous full adders (DAFAs) which incorporate redundant logic and are based on the delay-insensitive dual-rail code i.e. homogeneous data encoding, and follow a 4-phase return-to-zero handshaking. Amongst various RCA, carry lookahead adder (CLA), and carry select adder (CSLA) designs, which are based on homogeneous or heterogeneous delay-insensitive data encodings which correspond to the weak-indication or the early output timing model, the proposed early output asynchronous RCA that incorporates SAFAs and DAFAs with redundant logic is found to result in reduced latency for a dual-operand addition operation. In particular, for a 32-bit asynchronous RCA, utilizing 15 stages of DAFAs and 2 stages of SAFAs leads to reduced latency. The theoretical worst-case latencies of the different asynchronous adders were calculated by taking into account the typical gate delays of a 32/28nm CMOS digital cell library, and a comparison is made with their practical worst-case latencies estimated. The theoretical and practical worst-case latencies show a close correlation....Comment: arXiv admin note: text overlap with arXiv:1704.0761

    Asynchronous Early Output Dual-Bit Full Adders Based on Homogeneous and Heterogeneous Delay-Insensitive Data Encoding

    Get PDF
    This paper presents the designs of asynchronous early output dual-bit full adders without and with redundant logic (implicit) corresponding to homogeneous and heterogeneous delay-insensitive data encoding. For homogeneous delay-insensitive data encoding only dual-rail i.e. 1-of-2 code is used, and for heterogeneous delay-insensitive data encoding 1-of-2 and 1-of-4 codes are used. The 4-phase return-to-zero protocol is used for handshaking. To demonstrate the merits of the proposed dual-bit full adder designs, 32-bit ripple carry adders (RCAs) are constructed comprising dual-bit full adders. The proposed dual-bit full adders based 32-bit RCAs incorporating redundant logic feature reduced latency and area compared to their non-redundant counterparts with no accompanying power penalty. In comparison with the weakly indicating 32-bit RCA constructed using homogeneously encoded dual-bit full adders containing redundant logic, the early output 32-bit RCA comprising the proposed homogeneously encoded dual-bit full adders with redundant logic reports corresponding reductions in latency and area by 22.2% and 15.1% with no associated power penalty. On the other hand, the early output 32-bit RCA constructed using the proposed heterogeneously encoded dual-bit full adder which incorporates redundant logic reports respective decreases in latency and area than the weakly indicating 32-bit RCA that consists of heterogeneously encoded dual-bit full adders with redundant logic by 21.5% and 21.3% with nil power overhead. The simulation results obtained are based on a 32/28nm CMOS process technology

    Reliable Low-Latency and Low-Complexity Viterbi Architectures Benchmarked on ASIC and FPGA

    Get PDF
    The Viterbi algorithm is commonly applied in a number of sensitive usage models including decoding convolutional codes used in communications such as satellite communication, cellular relay, and wireless local area networks. Moreover, the algorithm has been applied to automatic speech recognition and storage devices. In this thesis, efficient error detection schemes for architectures based on low-latency, low-complexity Viterbi decoders are presented. The merit of the proposed schemes is that reliability requirements, overhead tolerance, and performance degradation limits are embedded in the structures and can be adapted accordingly. We also present three variants of recomputing with encoded operands and its modifications to detect both transient and permanent faults, coupled with signature-based schemes. The instrumented decoder architecture has been subjected to extensive error detection assessments through simulations, and application-specific integrated circuit (ASIC) [32nm library] and field-programmable gate array (FPGA) [Xilinx Virtex-6 family] implementations for benchmark. The proposed fine-grained approaches can be utilized based on reliability objectives and performance/implementation metrics degradation tolerance

    Reliable Hardware Architectures of CORDIC Algorithm with Fixed Angle of Rotations

    Get PDF
    Fixed-angle rotation operation of vectors is widely used in signal processing, graphics, and robotics. Various optimized coordinate rotation digital computer (CORDIC) designs have been proposed for uniform rotation of vectors through known and specified angles. Nevertheless, in the presence of faults, such hardware architectures are potentially vulnerable. In this thesis, we propose efficient error detection schemes for two fixed-angle rotation designs, i.e., the Interleaved Scaling and Cascaded Single-rotation CORDIC. To the best of our knowledge, this work is the first in providing reliable architectures for these variants of CORDIC. The former is suitable for low-area applications and, hence, we propose recomputing with encoded operands schemes which add negligible area overhead to the designs. Moreover, the proposed error detection schemes for the latter variant are optimized for efficient applications which hamper the performance of the architectures negligibly. We present three variants of recomputing with encoded operands to detect both transient and permanent faults, coupled with signature-based schemes. The overheads of the proposed designs are assessed through Xilinx FPGA implementations and their effectiveness is benchmarked through error simulations. The results give confidence for the proposed efficient architectures which can be tailored based on the reliability requirements and the overhead to be tolerated

    Area/latency optimized early output asynchronous full adders and relative-timed ripple carry adders

    Get PDF
    This article presents two area/latency optimized gate level asynchronous full adder designs which correspond to early output logic. The proposed full adders are constructed using the delay-insensitive dual-rail code and adhere to the four-phase return-to-zero handshaking. For an asynchronous ripple carry adder (RCA) constructed using the proposed early output full adders, the relative-timing assumption becomes necessary and the inherent advantages of the relative-timed RCA are: (1) computation with valid inputs, i.e., forward latency is data-dependent, and (2) computation with spacer inputs involves a bare minimum constant reverse latency of just one full adder delay, thus resulting in the optimal cycle time. With respect to different 32-bit RCA implementations, and in comparison with the optimized strong-indication, weak-indication, and early output full adder designs, one of the proposed early output full adders achieves respective reductions in latency by 67.8, 12.3 and 6.1 %, while the other proposed early output full adder achieves corresponding reductions in area by 32.6, 24.6 and 6.9 %, with practically no power penalty. Further, the proposed early output full adders based asynchronous RCAs enable minimum reductions in cycle time by 83.4, 15, and 8.8 % when considering carry-propagation over the entire RCA width of 32-bits, and maximum reductions in cycle time by 97.5, 27.4, and 22.4 % for the consideration of a typical carry chain length of 4 full adder stages, when compared to the least of the cycle time estimates of various strong-indication, weak-indication, and early output asynchronous RCAs of similar size. All the asynchronous full adders and RCAs were realized using standard cells in a semi-custom design fashion based on a 32/28 nm CMOS process technology

    Efficient modular arithmetic units for low power cryptographic applications

    Get PDF
    The demand for high security in energy constrained devices such as mobiles and PDAs is growing rapidly. This leads to the need for efficient design of cryptographic algorithms which offer data integrity, authentication, non-repudiation and confidentiality of the encrypted data and communication channels. The public key cryptography is an ideal choice for data integrity, authentication and non-repudiation whereas the private key cryptography ensures the confidentiality of the data transmitted. The latter has an extremely high encryption speed but it has certain limitations which make it unsuitable for use in certain applications. Numerous public key cryptographic algorithms are available in the literature which comprise modular arithmetic modules such as modular addition, multiplication, inversion and exponentiation. Recently, numerous cryptographic algorithms have been proposed based on modular arithmetic which are scalable, do word based operations and efficient in various aspects. The modular arithmetic modules play a crucial role in the overall performance of the cryptographic processor. Hence, better results can be obtained by designing efficient arithmetic modules such as modular addition, multiplication, exponentiation and squaring. This thesis is organized into three papers, describes the efficient implementation of modular arithmetic units, application of these modules in International Data Encryption Algorithm (IDEA). Second paper describes the IDEA algorithm implementation using the existing techniques and using the proposed efficient modular units. The third paper describes the fault tolerant design of a modular unit which has online self-checking capability --Abstract, page iv
    • …
    corecore