5,445 research outputs found

    Three dimensional information estimation and tracking for moving objects detection using two cameras framework

    Get PDF
    Calibration, matching and tracking are major concerns to obtain 3D information consisting of depth, direction and velocity. In finding depth, camera parameters and matched points are two necessary inputs. Depth, direction and matched points can be achieved accurately if cameras are well calibrated using manual traditional calibration. However, most of the manual traditional calibration methods are inconvenient to use because markers or real size of an object in the real world must be provided or known. Self-calibration can solve the traditional calibration limitation, but not on depth and matched points. Other approaches attempted to match corresponding object using 2D visual information without calibration, but they suffer low matching accuracy under huge perspective distortion. This research focuses on achieving 3D information using self-calibrated tracking system. In this system, matching and tracking are done under self-calibrated condition. There are three contributions introduced in this research to achieve the objectives. Firstly, orientation correction is introduced to obtain better relationship matrices for matching purpose during tracking. Secondly, after having relationship matrices another post-processing method, which is status based matching, is introduced for improving object matching result. This proposed matching algorithm is able to achieve almost 90% of matching rate. Depth is estimated after the status based matching. Thirdly, tracking is done based on x-y coordinates and the estimated depth under self-calibrated condition. Results show that the proposed self-calibrated tracking system successfully differentiates the location of objects even under occlusion in the field of view, and is able to determine the direction and the velocity of multiple moving objects

    Monocular visual traffic surveillance: a review

    Get PDF
    To facilitate the monitoring and management of modern transportation systems, monocular visual traffic surveillance systems have been widely adopted for speed measurement, accident detection, and accident prediction. Thanks to the recent innovations in computer vision and deep learning research, the performance of visual traffic surveillance systems has been significantly improved. However, despite this success, there is a lack of survey papers that systematically review these new methods. Therefore, we conduct a systematic review of relevant studies to fill this gap and provide guidance to future studies. This paper is structured along the visual information processing pipeline that includes object detection, object tracking, and camera calibration. Moreover, we also include important applications of visual traffic surveillance systems, such as speed measurement, behavior learning, accident detection and prediction. Finally, future research directions of visual traffic surveillance systems are outlined

    Vehicle detection and tracking using wireless sensors and video cameras

    Get PDF
    This thesis presents the development of a surveillance testbed using wireless sensors and video cameras for vehicle detection and tracking. The experimental study includes testbed design and discusses some of the implementation issues in using wireless sensors and video cameras for a practical application. A group of sensor devices equipped with light sensors are used to detect and localize the position of moving vehicle. Background subtraction method is used to detect the moving vehicle from the video sequences. Vehicle centroid is calculated in each frame. A non-linear minimization method is used to estimate the perspective transformation which project 3D points to 2D image points. Vehicle location estimates from three cameras are fused to form a single trajectory representing the vehicle motion. Experimental results using both sensors and cameras are presented. Average error between vehicle location estimates from the cameras and the wireless sensors is around 0.5ft

    AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    Get PDF
    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network, the node deployment by means of an autonomous helicopter, and the surveillance and tracking functionalities of the platform. Furthermore, the paper presents the first general experiments of the AWARE project that took place in March 2007 with the assistance of the Seville fire brigades

    Driven to Distraction: Self-Supervised Distractor Learning for Robust Monocular Visual Odometry in Urban Environments

    Full text link
    We present a self-supervised approach to ignoring "distractors" in camera images for the purposes of robustly estimating vehicle motion in cluttered urban environments. We leverage offline multi-session mapping approaches to automatically generate a per-pixel ephemerality mask and depth map for each input image, which we use to train a deep convolutional network. At run-time we use the predicted ephemerality and depth as an input to a monocular visual odometry (VO) pipeline, using either sparse features or dense photometric matching. Our approach yields metric-scale VO using only a single camera and can recover the correct egomotion even when 90% of the image is obscured by dynamic, independently moving objects. We evaluate our robust VO methods on more than 400km of driving from the Oxford RobotCar Dataset and demonstrate reduced odometry drift and significantly improved egomotion estimation in the presence of large moving vehicles in urban traffic.Comment: International Conference on Robotics and Automation (ICRA), 2018. Video summary: http://youtu.be/ebIrBn_nc-

    A Traffic State Detection Tool for Freeway Video Surveillance System

    Get PDF
    AbstractTraffic state is one of the most important traffic flow parameters to both the traffic management center and the traveler. It's difficult to extract traffic data using surveillance cameras because of the wider field, panning and zooming of the surveillance cameras. To leverage the existing surveillance camera infrastructure, a surveillance video based traffic state detection system is proposed. The proposed system can estimate traffic flow speed and road space occupancy, and recognize three typical traffic states (congested, slow, and smooth). Experimental results show that the system had good adaptation and high accuracy in daytime

    Deep learning-based anomalous object detection system powered by microcontroller for PTZ cameras

    Get PDF
    Automatic video surveillance systems are usually designed to detect anomalous objects being present in a scene or behaving dangerously. In order to perform adequately, they must incorporate models able to achieve accurate pattern recognition in an image, and deep learning neural networks excel at this task. However, exhaustive scan of the full image results in multiple image blocks or windows to analyze, which could make the time performance of the system very poor when implemented on low cost devices. This paper presents a system which attempts to detect abnormal moving objects within an area covered by a PTZ camera while it is panning. The decision about the block of the image to analyze is based on a mixture distribution composed of two components: a uniform probability distribution, which represents a blind random selection, and a mixture of Gaussian probability distributions. Gaussian distributions represent windows in the image where anomalous objects were detected previously and contribute to generate the next window to analyze close to those windows of interest. The system is implemented on a Raspberry Pi microcontroller-based board, which enables the design and implementation of a low-cost monitoring system that is able to perform image processing.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore