859 research outputs found

    The Extreme Polarimeter: Design, Performance, First Results & Upgrades

    Full text link
    Well over 700 exoplanets have been detected to date. Only a handful of these have been observed directly. Direct observation is extremely challenging due to the small separation and very large contrast involved. Imaging polarimetry offers a way to decrease the contrast between the unpolarized starlight and the light that has become linearly polarized after scattering by circumstellar material. This material can be the dust and debris found in circumstellar disks, but also the atmosphere or surface of an exoplanet. We present the design, calibration approach, polarimetric performance and sample observation results of the Extreme Polarimeter, an imaging polarimeter for the study of circumstellar environments in scattered light at visible wavelengths. The polarimeter uses the beam-exchange technique, in which the two orthogonal polarization states are imaged simultaneously and a polarization modulator swaps the polarization states of the two beams before the next image is taken. The instrument currently operates without the aid of Adaptive Optics. To reduce the effects of atmospheric seeing on the polarimetry, the images are taken at a frame rate of 35 fps, and large numbers of frames are combined to obtain the polarization images. Four successful observing runs have been performed using this instrument at the 4.2 m William Herschel Telescope on La Palma, targeting young stars with protoplanetary disks as well as evolved stars surrounded by dusty envelopes. In terms of fractional polarization, the instrument sensitivity is better than 10^-4. The contrast achieved between the central star and the circumstellar source is of the order 10^-6. We show that our calibration approach yields absolute polarization errors below 1%

    O/IR Polarimetry for the 2010 Decade (GAN): Science at the Edge, Sharp Tools for All

    Full text link
    Science opportunities and recommendations concerning optical/infrared polarimetry for the upcoming decade in the field of Galactic science. Community-based White Paper to Astro2010 in response to the call for such papers.Comment: White Paper to the Galactic Neighborhood (GAN) Science Frontiers Panel of the Astro2010 Decadal Surve

    Performance of the Gemini Planet Imager Non-Redundant Mask and spectroscopy of two close-separation binaries HR 2690 and HD 142527

    Full text link
    The Gemini Planet Imager (GPI) contains a 10-hole non-redundant mask (NRM), enabling interferometric resolution in complement to its coronagraphic capabilities. The NRM operates both in spectroscopic (integral field spectrograph, henceforth IFS) and polarimetric configurations. NRM observations were taken between 2013 and 2016 to characterize its performance. Most observations were taken in spectroscopic mode with the goal of obtaining precise astrometry and spectroscopy of faint companions to bright stars. We find a clear correlation between residual wavefront error measured by the AO system and the contrast sensitivity by comparing phase errors in observations of the same source, taken on different dates. We find a typical 5-σ\sigma contrast sensitivity of 2−3 × 10−32-3~\times~10^{-3} at ∌λ/D\sim\lambda/D. We explore the accuracy of spectral extraction of secondary components of binary systems by recovering the signal from a simulated source injected into several datasets. We outline data reduction procedures unique to GPI's IFS and describe a newly public data pipeline used for the presented analyses. We demonstrate recovery of astrometry and spectroscopy of two known companions to HR 2690 and HD 142527. NRM+polarimetry observations achieve differential visibility precision of σ∌0.4%\sigma\sim0.4\% in the best case. We discuss its limitations on Gemini-S/GPI for resolving inner regions of protoplanetary disks and prospects for future upgrades. We summarize lessons learned in observing with NRM in spectroscopic and polarimetric modes.Comment: Accepted to AJ, 22 pages, 14 figure

    An investigation of the Eigenvalue Calibration Method (ECM) using GASP for non-imaging and imaging detectors

    Get PDF
    Polarised light from astronomical targets can yield a wealth of information about their source radiation mechanisms, and about the geometry of the scattered light regions. Optical observations, of both the linear and circular polarisation components, have been impeded due to non-optimised instrumentation. The need for suitable observing conditions and the availability of luminous targets are also limiting factors. GASP uses division of amplitude polarimeter (DOAP) (Compain and Drevillon) to measure the four components of the Stokes vector simultaneously, which eliminates the constraints placed upon the need for moving parts during observation, and offers a real-time complete measurement of polarisation. Results from the GASP calibration are presented in this work for both a 1D detector system, and a pixel-by-pixel analysis on a 2D detector system. Following Compain et al. we use the Eigenvalue Calibration Method (ECM) to measure the polarimetric limitations of the instrument for each of the two systems. Consequently, the ECM is able to compensate for systematic errors introduced by the calibration optics, and it also accounts for all optical elements of the polarimeter in the output. Initial laboratory results of the ECM are presented, using APD detectors, where errors of 0.2% and 0.1{\deg} were measured for the degree of linear polarisation and polarisation angle respectively. Channel-to-channel image registration is an important aspect of 2-D polarimetry. We present our calibration results of the measured Mueller matrix of each sample, used by the ECM. A set of Zenith flat-field images were recorded during an observing campaign at the Palomar 200 inch telescope in November 2012. From these we show the polarimetric errors from the spatial polarimetry indicating both the stability and absolute accuracy of GASP.Comment: Accepted for publication in Experimental Astronom

    Calibrating and Stabilizing Spectropolarimeters with Charge Shuffling and Daytime Sky Measurements

    Full text link
    Well-calibrated spectropolarimetry studies at resolutions of R>R>10,000 with signal-to-noise ratios (SNRs) better than 0.01\% across individual line profiles, are becoming common with larger aperture telescopes. Spectropolarimetric studies require high SNR observations and are often limited by instrument systematic errors. As an example, fiber-fed spectropolarimeters combined with advanced line-combination algorithms can reach statistical error limits of 0.001\% in measurements of spectral line profiles referenced to the continuum. Calibration of such observations is often required both for cross-talk and for continuum polarization. This is not straightforward since telescope cross-talk errors are rarely less than ∌\sim1\%. In solar instruments like the Daniel K. Inouye Solar Telescope (DKIST), much more stringent calibration is required and the telescope optical design contains substantial intrinsic polarization artifacts. This paper describes some generally useful techniques we have applied to the HiVIS spectropolarimeter at the 3.7m AEOS telescope on Haleakala. HiVIS now yields accurate polarized spectral line profiles that are shot-noise limited to 0.01\% SNR levels at our full spectral resolution of 10,000 at spectral sampling of ∌\sim100,000. We show line profiles with absolute spectropolarimetric calibration for cross-talk and continuum polarization in a system with polarization cross-talk levels of essentially 100\%. In these data the continuum polarization can be recovered to one percent accuracy because of synchronized charge-shuffling model now working with our CCD detector. These techniques can be applied to other spectropolarimeters on other telescopes for both night and day-time applications such as DKIST, TMT and ELT which have folded non-axially symmetric foci.Comment: Accepted to A&

    Polarisation and Beam Energy Measurement at a Linear e+e−e^+e^- Collider

    Full text link
    The International Linear Collider (ILC) is a future electron/positron collider at the energy frontier. Its physics goals are clearly focused on precision measurements at the electroweak scale and beyond. Beam energy and beam polarisation are two important beam parameters, which need to be measured and monitored to any possible precision. We discuss in this publication the foreseen concepts of beam energy and beam polarisation measurement at the ILC: Two Compton polarimeters per beam line will determine the beam polarisation. The anticipated precision of this measurement amounts to ΔP/P=2.5×10−3\Delta \mathcal{P} / \mathcal{P} =2.5 \times 10^{-3}, which is a challenging goal putting highest demands on detector alignment and linearity. Recent detector developments as well as a detector calibration technique are described, which allow for meeting these requirements. The beam energy is measured before and after the interaction point to a targeted precision of ΔE/E=10−4\Delta E/E = 10^{-4}. Thereby, the two foreseen concepts are introduced: A noninvasive energy spectrometer based on beam position monitors is planned to be operated before the interaction region. Behind, a synchrotron radiation imaging detector will allow not only for measuring the beam energy, but also gives access to the beam energy spread of the (disrupted) beam.Comment: Talk presented at the conference "Instrumentation for Colliding Beam Physics" (INSTR14), Novosibirsk, Russia, 24 February - 1 March, 201

    The unlikely rise of masking interferometry: leading the way with 19th century technology

    Full text link
    The exquisite precision delivered by interferometric techniques is rapidly being applied to more and more branches of optical astronomy. One particularly successful strategy to obtain structures at the scale of the diffraction limit is Aperture Masking Interferometry, which is presently experience a golden age with implementations at a host of large telescopes around the world. This startlingly durable technique, which turns 144 years old this year, presently sets the standard for the recovery of faint companions within a few resolution elements from the core of a stellar point spread function. This invited review will give a historical introduction and overview of the modern status of the technique, the science being delivered, and prospects for new advances and applications.Comment: This is an invited review for SPIE Amsterdam in 2012. It presents a brief history of masking interferometry, and some thoughts on future progress. 11 pages, 4 figs, lots of ref

    Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm

    Full text link
    A fast multichannel Stokes/Mueller polarimeter with no mechanically moving parts has been designed to have close to optimal performance from 430-2000 nm by applying a genetic algorithm. Stokes (Mueller) polarimeters are characterized by their ability to analyze the full Stokes (Mueller) vector (matrix) of the incident light. This ability is characterized by the condition number, Îș\kappa, which directly influences the measurement noise in polarimetric measurements. Due to the spectral dependence of the retardance in birefringent materials, it is not trivial to design a polarimeter using dispersive components. We present here both a method to do this optimization using a genetic algorithm, as well as simulation results. Our results include fast, broad-band polarimeter designs for spectrographic use, based on 2 and 3 Ferroelectric Liquid Crystals, whose material properties are taken from measured values. The results promise to reduce the measurement noise significantly over previous designs, up to a factor of 4.5 for a Mueller polarimeter, in addition to extending the spectral range.Comment: 10 pages, 6 figures, submitted to Optics Expres
    • 

    corecore