48 research outputs found

    Multilinear Maps from Obfuscation

    Get PDF
    International audienceWe provide constructions of multilinear groups equipped with natural hard problems from in-distinguishability obfuscation, homomorphic encryption, and NIZKs. This complements known results on the constructions of indistinguishability obfuscators from multilinear maps in the reverse direction. We provide two distinct, but closely related constructions and show that multilinear analogues of the DDH assumption hold for them. Our first construction is symmetric and comes with a κ-linear map e : G κ −→ G T for prime-order groups G and G T. To establish the hardness of the κ-linear DDH problem, we rely on the existence of a base group for which the (κ − 1)-strong DDH assumption holds. Our second construction is for the asymmetric setting, where e : G 1 × · · · × G κ −→ G T for a collection of κ + 1 prime-order groups G i and G T , and relies only on the standard DDH assumption in its base group. In both constructions the linearity κ can be set to any arbitrary but a priori fixed polynomial value in the security parameter. We rely on a number of powerful tools in our constructions: (probabilistic) indistinguishability obfuscation, dual-mode NIZK proof systems (with perfect soundness, witness indistinguishability and zero knowledge), and additively homomorphic encryption for the group Z + N. At a high level, we enable " bootstrapping " multilinear assumptions from their simpler counterparts in standard cryptographic groups, and show the equivalence of IO and multilinear maps under the existence of the aforementioned primitives

    Hard isogeny problems over RSA moduli and groups with infeasible inversion

    Get PDF
    We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders. Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.Comment: Significant revision of the article previously titled "A Candidate Group with Infeasible Inversion" (arXiv:1810.00022v1). Cleared up the constructions by giving toy examples, added "The Parallelogram Attack" (Sec 5.3.2). 54 pages, 8 figure

    Generic Hardness of Inversion on Ring and Its Relation to Self-Bilinear Map

    Get PDF
    In this paper, we study the generic hardness of the inversion problem on a ring, which is a problem to compute the inverse of a given prime cc by just using additions, subtractions and multiplications on the ring. If the characteristic of an underlying ring is public and coprime to cc, then it is easy to compute the inverse of cc by using the extended Euclidean algorithm. On the other hand, if the characteristic is hidden, it seems difficult to compute it. For discussing the generic hardness of the inversion problem, we first extend existing generic ring models to capture a ring of an unknown characteristic. Then we prove that there is no generic algorithm to solve the inversion problem in our model when the underlying ring is isomorphic to Zp\mathbb{Z}_p for a randomly chosen prime pp assuming the hardness of factorization of an unbalanced modulus. We also study a relation between the inversion problem on a ring and a self-bilinear map. We give a ring-based construction of a self-bilinear map, and prove that natural complexity assumptions including the multilinear computational Diffie-Hellman (MCDH) assumption hold w.r.t the resulting sef-bilinear map if the inversion problem is hard on the underlying ring

    A Primer on Cryptographic Multilinear Maps and Code Obfuscation

    Get PDF
    The construction of cryptographic multilinear maps and a general-purpose code obfuscator were two long-standing open problems in cryptography. It has been clear for a number of years that constructions of these two primitives would yield many interesting applications. This thesis describes the Coron-Lepoint-Tibouchi candidate construction for multilinear maps, as well as new candidates for code obfuscation. We give an overview of current multilinear and obfuscation research, and present some relevant applications. We also provide some examples and warnings regarding the inefficiency of the new constructions. The presentation is self-contained and should be accessible to the novice reader

    KDM Security for Identity-Based Encryption: Constructions and Separations

    Get PDF
    For encryption schemes, key dependent message (KDM) security requires that ciphertexts preserve secrecy even when the messages to be encrypted depend on the secret keys. While KDM security has been extensively studied for public-key encryption (PKE), it receives much less attention in the setting of identity-based encryption (IBE). In this work, we focus on the KDM security for IBE. Our results are threefold. We first propose a generic approach to transfer the KDM security results (both positive and negative) from PKE to IBE. At the heart of our approach is a neat structure-mirroring PKE-to-IBE transformation based on indistinguishability obfuscation and puncturable PRFs, which establishes a connection between PKE and IBE in general. However, the obtained results are restricted to selective-identity sense. We then concentrate on results in adaptive-identity sense. On the positive side, we present two constructions that achieve KDM security in the adaptive-identity sense for the first time. One is built from identity-based hash proof system (IB-HPS) with homomorphic property, which indicates that the IBE schemes of Gentry (Eurocrypt 2006), Coron (DCC 2009), Chow et al. (CCS 2010) are actually KDM-secure in the single-key setting. The other is built from indistinguishability obfuscation and a new notion named puncturable unique signature, which is bounded KDM-secure in the single-key setting. On the negative side, we separate CPA/CCA security from nn-circular security (which is a prototypical case of KDM security) for IBE by giving a counterexample based on differing-inputs obfuscation and a new notion named puncturable IBE. We further propose a general framework for generating nn-circular security counterexamples in identity-based setting, which might be of independent interest

    Witness Encryption for Succinct Functional Commitments and Applications

    Get PDF
    Witness encryption (WE), introduced by Garg, Gentry, Sahai, and Waters (STOC 2013) allows one to encrypt a message to a statement x\mathsf{x} for some NP language L\mathcal{L}, such that any user holding a witness for x∈L\mathsf{x} \in \mathcal{L} can decrypt the ciphertext. The extreme power of this primitive comes at the cost of its elusiveness: a practical construction from established cryptographic assumptions is currently out of reach. In this work we introduce and construct a new notion of encryption that has a strong flavor of WE and that, crucially, we can build from well-studied assumptions (based on bilinear pairings) for interesting classes of computation. Our new notion, witness encryption for (succinct) functional commitment, takes inspiration from a prior weakening of witness encryption introduced by Benhamouda and Lin (TCC 2020). In a nutshell, theirs is a WE where: the encryption statement consists of a (non compressible) commitment cm\mathsf{cm}, a function GG and a value yy; the decryption witness consists of a (non succinct) NIZK proof about the fact that cm\mathsf{cm} opens to vv such that y=G(v)y=G(v). Benhamouda and Lin showed how to apply this primitive to obtain MPC with non-interactive and reusability properties---dubbed mrNISC---replacing the requirement of WE in existing round-collapsing techniques. Our new WE-like notion is motivated by supporting both commitments of a fixed size and fixed decryption complexity, independent ∣v∣|v|---in contrast to the work by Benhamouda and Lin where this complexity is linear. As a byproduct, our efficiency profile substantially improves the offline stage of mrNISC protocols. Our work solves the additional challenges that arise from relying on computationally binding commitments and computational soundness (of functional commitments), as opposed to statistical binding and unconditional soundness (of NIZKs), used in Benhamouda and Lin\u27s work. To tackle them, we not only modify their basic blueprint, but also model and instantiate different types of projective hash functions as building blocks. Furthermore, as one of our main contributions, we show the first pairing-based construction of functional commitments for NC1 circuits with linear verification. Our techniques are of independent interest and may highlight new avenues to design practical variants of witness encryption. As an additional contribution, we show that our new WE-flavored primitive and its efficiency properties are versatile: we discuss its further applications and show how to extend this primitive to better suit these settings

    Publicly Verifiable Proofs from Blockchains

    Get PDF
    A proof system is publicly verifiable, if anyone, by looking at the transcript of the proof, can be convinced that the corresponding theorem is true. Public verifiability is important in many applications since it allows to compute a proof only once while convincing an unlimited number of verifiers. Popular interactive proof systems (e.g., Σ\Sigma-protocols) protect the witness through various properties (e.g., witness indistinguishability (WI) and zero knowledge (ZK)) but typically they are not publicly verifiable since such proofs are convincing only for those verifiers who contributed to the transcripts of the proofs. The only known proof systems that are publicly verifiable rely on a non-interactive (NI) prover, through trust assumptions (e.g., NIZK in the CRS model), heuristic assumptions (e.g., NIZK in the random oracle model),specific number-theoretic assumptions on bilinear groups or relying on obfuscation assumptions (obtaining NIWI with no setups). In this work we construct publicly verifiable witness-indistinguishable proof systems from any Σ\Sigma-protocol, based only on the existence of a very generic blockchain. The novelty of our approach is in enforcing a non-interactive verification (thus guaranteeing public verifiability) while allowing the prover to be interactive and talk to the blockchain (this allows us to circumvent the need of strong assumptions and setups). This opens interesting directions for the design of cryptographic protocols leveraging on blockchain technology
    corecore