620 research outputs found

    Self-avoiding walks and amenability

    Full text link
    The connective constant μ(G)\mu(G) of an infinite transitive graph GG is the exponential growth rate of the number of self-avoiding walks from a given origin. The relationship between connective constants and amenability is explored in the current work. Various properties of connective constants depend on the existence of so-called 'graph height functions', namely: (i) whether μ(G)\mu(G) is a local function on certain graphs derived from GG, (ii) the equality of μ(G)\mu(G) and the asymptotic growth rate of bridges, and (iii) whether there exists a terminating algorithm for approximating μ(G)\mu(G) to a given degree of accuracy. In the context of amenable groups, it is proved that the Cayley graphs of infinite, finitely generated, elementary amenable groups support graph height functions, which are in addition harmonic. In contrast, the Cayley graph of the Grigorchuk group, which is amenable but not elementary amenable, does not have a graph height function. In the context of non-amenable, transitive graphs, a lower bound is presented for the connective constant in terms of the spectral bottom of the graph. This is a strengthening of an earlier result of the same authors. Secondly, using a percolation inequality of Benjamini, Nachmias, and Peres, it is explained that the connective constant of a non-amenable, transitive graph with large girth is close to that of a regular tree. Examples are given of non-amenable groups without graph height functions, of which one is the Higman group.Comment: v2 differs from v1 in the inclusion of further material concerning non-amenable graphs, notably an improved lower bound for the connective constan

    On trivial words in finitely presented groups

    Full text link
    We propose a numerical method for studying the cogrowth of finitely presented groups. To validate our numerical results we compare them against the corresponding data from groups whose cogrowth series are known exactly. Further, we add to the set of such groups by finding the cogrowth series for Baumslag-Solitar groups BS(N,N)=\mathrm{BS}(N,N) = and prove that their cogrowth rates are algebraic numbers.Comment: This article has been rewritten as two separate papers, with improved exposition. The new papers are arXiv:1309.4184 and arXiv:1312.572

    Poisson-Furstenberg boundary and growth of groups

    Full text link
    We study the Poisson-Furstenberg boundary of random walks on permutational wreath products. We give a sufficient condition for a group to admit a symmetric measure of finite first moment with non-trivial boundary, and show that this criterion is useful to establish exponential word growth of groups. We construct groups of exponential growth such that all finitely supported (not necessarily symmetric, possibly degenerate) random walks on these groups have trivial boundary. This gives a negative answer to a question of Kaimanovich and Vershik.Comment: 24 page

    Self-avoiding walks and connective constants

    Full text link
    The connective constant μ(G)\mu(G) of a quasi-transitive graph GG is the asymptotic growth rate of the number of self-avoiding walks (SAWs) on GG from a given starting vertex. We survey several aspects of the relationship between the connective constant and the underlying graph GG. ∙\bullet We present upper and lower bounds for μ\mu in terms of the vertex-degree and girth of a transitive graph. ∙\bullet We discuss the question of whether μ≥ϕ\mu\ge\phi for transitive cubic graphs (where ϕ\phi denotes the golden mean), and we introduce the Fisher transformation for SAWs (that is, the replacement of vertices by triangles). ∙\bullet We present strict inequalities for the connective constants μ(G)\mu(G) of transitive graphs GG, as GG varies. ∙\bullet As a consequence of the last, the connective constant of a Cayley graph of a finitely generated group decreases strictly when a new relator is added, and increases strictly when a non-trivial group element is declared to be a further generator. ∙\bullet We describe so-called graph height functions within an account of "bridges" for quasi-transitive graphs, and indicate that the bridge constant equals the connective constant when the graph has a unimodular graph height function. ∙\bullet A partial answer is given to the question of the locality of connective constants, based around the existence of unimodular graph height functions. ∙\bullet Examples are presented of Cayley graphs of finitely presented groups that possess graph height functions (that are, in addition, harmonic and unimodular), and that do not. ∙\bullet The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with arXiv:1304.721
    • …
    corecore