462 research outputs found

    Multi-modal Multi-kernel Graph Learning for Autism Prediction and Biomarker Discovery

    Full text link
    Due to its complexity, graph learning-based multi-modal integration and classification is one of the most challenging obstacles for disease prediction. To effectively offset the negative impact between modalities in the process of multi-modal integration and extract heterogeneous information from graphs, we propose a novel method called MMKGL (Multi-modal Multi-Kernel Graph Learning). For the problem of negative impact between modalities, we propose a multi-modal graph embedding module to construct a multi-modal graph. Different from conventional methods that manually construct static graphs for all modalities, each modality generates a separate graph by adaptive learning, where a function graph and a supervision graph are introduced for optimization during the multi-graph fusion embedding process. We then propose a multi-kernel graph learning module to extract heterogeneous information from the multi-modal graph. The information in the multi-modal graph at different levels is aggregated by convolutional kernels with different receptive field sizes, followed by generating a cross-kernel discovery tensor for disease prediction. Our method is evaluated on the benchmark Autism Brain Imaging Data Exchange (ABIDE) dataset and outperforms the state-of-the-art methods. In addition, discriminative brain regions associated with autism are identified by our model, providing guidance for the study of autism pathology

    Differentiable Graph Module (DGM) for Graph Convolutional Networks

    Full text link
    Graph deep learning has recently emerged as a powerful ML concept allowing to generalize successful deep neural architectures to non-Euclidean structured data. Such methods have shown promising results on a broad spectrum of applications ranging from social science, biomedicine, and particle physics to computer vision, graphics, and chemistry. One of the limitations of the majority of the current graph neural network architectures is that they are often restricted to the transductive setting and rely on the assumption that the underlying graph is known and fixed. In many settings, such as those arising in medical and healthcare applications, this assumption is not necessarily true since the graph may be noisy, partially- or even completely unknown, and one is thus interested in inferring it from the data. This is especially important in inductive settings when dealing with nodes not present in the graph at training time. Furthermore, sometimes such a graph itself may convey insights that are even more important than the downstream task. In this paper, we introduce Differentiable Graph Module (DGM), a learnable function predicting the edge probability in the graph relevant for the task, that can be combined with convolutional graph neural network layers and trained in an end-to-end fashion. We provide an extensive evaluation of applications from the domains of healthcare (disease prediction), brain imaging (gender and age prediction), computer graphics (3D point cloud segmentation), and computer vision (zero-shot learning). We show that our model provides a significant improvement over baselines both in transductive and inductive settings and achieves state-of-the-art results
    • …
    corecore