732 research outputs found

    Adaptive Density Estimation for Generative Models

    Get PDF
    Unsupervised learning of generative models has seen tremendous progress over recent years, in particular due to generative adversarial networks (GANs), variational autoencoders, and flow-based models. GANs have dramatically improved sample quality, but suffer from two drawbacks: (i) they mode-drop, i.e., do not cover the full support of the train data, and (ii) they do not allow for likelihood evaluations on held-out data. In contrast, likelihood-based training encourages models to cover the full support of the train data, but yields poorer samples. These mutual shortcomings can in principle be addressed by training generative latent variable models in a hybrid adversarial-likelihood manner. However, we show that commonly made parametric assumptions create a conflict between them, making successful hybrid models non trivial. As a solution, we propose to use deep invertible transformations in the latent variable decoder. This approach allows for likelihood computations in image space, is more efficient than fully invertible models, and can take full advantage of adversarial training. We show that our model significantly improves over existing hybrid models: offering GAN-like samples, IS and FID scores that are competitive with fully adversarial models, and improved likelihood scores

    Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs

    Get PDF
    The idea of computer vision as the Bayesian inverse problem to computer graphics has a long history and an appealing elegance, but it has proved difficult to directly implement. Instead, most vision tasks are approached via complex bottom-up processing pipelines. Here we show that it is possible to write short, simple probabilistic graphics programs that define flexible generative models and to automatically invert them to interpret real-world images. Generative probabilistic graphics programs consist of a stochastic scene generator, a renderer based on graphics software, a stochastic likelihood model linking the renderer's output and the data, and latent variables that adjust the fidelity of the renderer and the tolerance of the likelihood model. Representations and algorithms from computer graphics, originally designed to produce high-quality images, are instead used as the deterministic backbone for highly approximate and stochastic generative models. This formulation combines probabilistic programming, computer graphics, and approximate Bayesian computation, and depends only on general-purpose, automatic inference techniques. We describe two applications: reading sequences of degraded and adversarially obscured alphanumeric characters, and inferring 3D road models from vehicle-mounted camera images. Each of the probabilistic graphics programs we present relies on under 20 lines of probabilistic code, and supports accurate, approximately Bayesian inferences about ambiguous real-world images.Comment: The first two authors contributed equally to this wor

    Robustness and Interpretability of Neural Networks’ Predictions under Adversarial Attacks

    Get PDF
    Le reti neurali profonde (DNNs) sono potenti modelli predittivi, che superano le capacità umane in una varietà di task. Imparano sistemi decisionali complessi e flessibili dai dati a disposizione e raggiungono prestazioni eccezionali in molteplici campi di apprendimento automatico, dalle applicazioni dell'intelligenza artificiale, come il riconoscimento di immagini, parole e testi, alle scienze più tradizionali, tra cui medicina, fisica e biologia. Nonostante i risultati eccezionali, le prestazioni elevate e l’alta precisione predittiva non sono sufficienti per le applicazioni nel mondo reale, specialmente in ambienti critici per la sicurezza, dove l'utilizzo dei DNNs è fortemente limitato dalla loro natura black-box. Vi è una crescente necessità di comprendere come vengono eseguite le predizioni, fornire stime di incertezza, garantire robustezza agli attacchi avversari e prevenire comportamenti indesiderati. Anche le migliori architetture sono vulnerabili a piccole perturbazioni nei dati di input, note come attacchi avversari: manipolazioni malevole degli input che sono percettivamente indistinguibili dai campioni originali ma sono in grado di ingannare il modello in predizioni errate. In questo lavoro, dimostriamo che tale fragilità è correlata alla geometria del manifold dei dati ed è quindi probabile che sia una caratteristica intrinseca delle predizioni dei DNNs. Questa condizione suggerisce una possibile direzione al fine di ottenere robustezza agli attacchi: studiamo la geometria degli attacchi avversari nel limite di un numero infinito di dati e di pesi per le reti neurali Bayesiane, dimostrando che, in questo limite, sono immuni agli attacchi avversari gradient-based. Inoltre, proponiamo alcune tecniche di training per migliorare la robustezza delle architetture deterministiche. In particolare, osserviamo sperimentalmente che ensembles di reti neurali addestrati su proiezioni casuali degli input originali in spazi basso-dimensionali sono più resistenti agli attacchi. Successivamente, ci concentriamo sul problema dell'interpretabilità delle predizioni delle reti nel contesto delle saliency-based explanations. Analizziamo la stabilità delle explanations soggette ad attacchi avversari e dimostriamo che, nel limite di un numero infinito di dati e di pesi, le interpretazioni Bayesiane sono più stabili di quelle fornite dalle reti deterministiche. Confermiamo questo comportamento in modo sperimentale nel regime di un numero finito di dati. Infine, introduciamo il concetto di attacco avversario alle sequenze di amminoacidi per protein Language Models (LM). I modelli di Deep Learning per la predizione della struttura delle proteine, come AlphaFold2, sfruttano le architetture Transformer e il loro meccanismo di attention per catturare le proprietà strutturali e funzionali delle sequenze di amminoacidi. Nonostante l'elevata precisione delle predizioni, perturbazioni biologicamente piccole delle sequenze di input, o anche mutazioni di un singolo amminoacido, possono portare a strutture 3D sostanzialmente diverse. Al contempo, i protein LMs sono insensibili alle mutazioni che inducono misfolding o disfunzione (ad esempio le missense mutations). In particolare, le predizioni delle coordinate 3D non rivelano l'effetto di unfolding indotto da queste mutazioni. Pertanto, esiste un'evidente incoerenza tra l'importanza biologica delle mutazioni e il conseguente cambiamento nella predizione strutturale. Ispirati da questo problema, introduciamo il concetto di perturbazione avversaria delle sequenze proteiche negli embedding continui dei protein LMs. Il nostro metodo utilizza i valori di attention per rilevare le posizioni degli amminoacidi più vulnerabili nelle sequenze di input. Le mutazioni avversarie sono biologicamente diverse dalle sequenze di riferimento e sono in grado di alterare in modo significativo le strutture 3D.Deep Neural Networks (DNNs) are powerful predictive models, exceeding human capabilities in a variety of tasks. They learn complex and flexible decision systems from the available data and achieve exceptional performances in multiple machine learning fields, spanning from applications in artificial intelligence, such as image, speech and text recognition, to the more traditional sciences, including medicine, physics and biology. Despite the outstanding achievements, high performance and high predictive accuracy are not sufficient for real-world applications, especially in safety-critical settings, where the usage of DNNs is severely limited by their black-box nature. There is an increasing need to understand how predictions are performed, to provide uncertainty estimates, to guarantee robustness to malicious attacks and to prevent unwanted behaviours. State-of-the-art DNNs are vulnerable to small perturbations in the input data, known as adversarial attacks: maliciously crafted manipulations of the inputs that are perceptually indistinguishable from the original samples but are capable of fooling the model into incorrect predictions. In this work, we prove that such brittleness is related to the geometry of the data manifold and is therefore likely to be an intrinsic feature of DNNs’ predictions. This negative condition suggests a possible direction to overcome such limitation: we study the geometry of adversarial attacks in the large-data, overparameterized limit for Bayesian Neural Networks and prove that, in this limit, they are immune to gradient-based adversarial attacks. Furthermore, we propose some training techniques to improve the adversarial robustness of deterministic architectures. In particular, we experimentally observe that ensembles of NNs trained on random projections of the original inputs into lower dimensional spaces are more resilient to the attacks. Next, we focus on the problem of interpretability of NNs’ predictions in the setting of saliency-based explanations. We analyze the stability of the explanations under adversarial attacks on the inputs and we prove that, in the large-data and overparameterized limit, Bayesian interpretations are more stable than those provided by deterministic networks. We validate this behaviour in multiple experimental settings in the finite data regime. Finally, we introduce the concept of adversarial perturbations of amino acid sequences for protein Language Models (LMs). Deep Learning models for protein structure prediction, such as AlphaFold2, leverage Transformer architectures and their attention mechanism to capture structural and functional properties of amino acid sequences. Despite the high accuracy of predictions, biologically small perturbations of the input sequences, or even single point mutations, can lead to substantially different 3d structures. On the other hand, protein language models are insensitive to mutations that induce misfolding or dysfunction (e.g. missense mutations). Precisely, predictions of the 3d coordinates do not reveal the structure-disruptive effect of these mutations. Therefore, there is an evident inconsistency between the biological importance of mutations and the resulting change in structural prediction. Inspired by this problem, we introduce the concept of adversarial perturbation of protein sequences in continuous embedding spaces of protein language models. Our method relies on attention scores to detect the most vulnerable amino acid positions in the input sequences. Adversarial mutations are biologically diverse from their references and are able to significantly alter the resulting 3D structures
    • …
    corecore