106,656 research outputs found

    Offspring Population Size Matters when Comparing Evolutionary Algorithms with Self-Adjusting Mutation Rates

    Full text link
    We analyze the performance of the 2-rate (1+λ)(1+\lambda) Evolutionary Algorithm (EA) with self-adjusting mutation rate control, its 3-rate counterpart, and a (1+λ)(1+\lambda)~EA variant using multiplicative update rules on the OneMax problem. We compare their efficiency for offspring population sizes ranging up to λ=3,200\lambda=3,200 and problem sizes up to n=100,000n=100,000. Our empirical results show that the ranking of the algorithms is very consistent across all tested dimensions, but strongly depends on the population size. While for small values of λ\lambda the 2-rate EA performs best, the multiplicative updates become superior for starting for some threshold value of λ\lambda between 50 and 100. Interestingly, for population sizes around 50, the (1+λ)(1+\lambda)~EA with static mutation rates performs on par with the best of the self-adjusting algorithms. We also consider how the lower bound pminp_{\min} for the mutation rate influences the efficiency of the algorithms. We observe that for the 2-rate EA and the EA with multiplicative update rules the more generous bound pmin=1/n2p_{\min}=1/n^2 gives better results than pmin=1/np_{\min}=1/n when λ\lambda is small. For both algorithms the situation reverses for large~λ\lambda.Comment: To appear at Genetic and Evolutionary Computation Conference (GECCO'19). v2: minor language revisio

    Runtime Analysis for Self-adaptive Mutation Rates

    Full text link
    We propose and analyze a self-adaptive version of the (1,λ)(1,\lambda) evolutionary algorithm in which the current mutation rate is part of the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time (number of fitness evaluations) of O(nλ/logλ+nlogn)O(n\lambda/\log\lambda+n\log n) when λ\lambda is at least ClnnC \ln n for some constant C>0C > 0. For all values of λClnn\lambda \ge C \ln n, this performance is asymptotically best possible among all λ\lambda-parallel mutation-based unbiased black-box algorithms. Our result shows that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. At the same time, it proves that a relatively complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gie{\ss}en, Witt, and Yang~(GECCO~2017) can be replaced by our simple endogenous scheme. On the technical side, the paper contributes new tools for the analysis of two-dimensional drift processes arising in the analysis of dynamic parameter choices in EAs, including bounds on occupation probabilities in processes with non-constant drift

    Runtime Analysis of the (1+(λ,λ))(1+(\lambda,\lambda)) Genetic Algorithm on Random Satisfiable 3-CNF Formulas

    Full text link
    The (1+(λ,λ))(1+(\lambda,\lambda)) genetic algorithm, first proposed at GECCO 2013, showed a surprisingly good performance on so me optimization problems. The theoretical analysis so far was restricted to the OneMax test function, where this GA profited from the perfect fitness-distance correlation. In this work, we conduct a rigorous runtime analysis of this GA on random 3-SAT instances in the planted solution model having at least logarithmic average degree, which are known to have a weaker fitness distance correlation. We prove that this GA with fixed not too large population size again obtains runtimes better than Θ(nlogn)\Theta(n \log n), which is a lower bound for most evolutionary algorithms on pseudo-Boolean problems with unique optimum. However, the self-adjusting version of the GA risks reaching population sizes at which the intermediate selection of the GA, due to the weaker fitness-distance correlation, is not able to distinguish a profitable offspring from others. We show that this problem can be overcome by equipping the self-adjusting GA with an upper limit for the population size. Apart from sparse instances, this limit can be chosen in a way that the asymptotic performance does not worsen compared to the idealistic OneMax case. Overall, this work shows that the (1+(λ,λ))(1+(\lambda,\lambda)) GA can provably have a good performance on combinatorial search and optimization problems also in the presence of a weaker fitness-distance correlation.Comment: An extended abstract of this report will appear in the proceedings of the 2017 Genetic and Evolutionary Computation Conference (GECCO 2017

    Brief Announcement: Parallel Dynamic Tree Contraction via Self-Adjusting Computation

    Get PDF
    International audienceDynamic algorithms are used to compute a property of some data while the data undergoes changes over time. Many dynamic algorithms have been proposed but nearly all are sequential. In this paper, we present our ongoing work on designing a parallel algorithm for the dynamic trees problem, which requires computing a property of a forest as the forest undergoes changes. Our algorithm allows insertion and/or deletion of both vertices and edges anywhere in the input and performs updates in parallel. We obtain our algorithm by applying a dynamization technique called self-adjusting computation to the classic algorithm of Miller and Reif for tree contraction

    Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings

    Full text link
    While evolutionary algorithms are known to be very successful for a broad range of applications, the algorithm designer is often left with many algorithmic choices, for example, the size of the population, the mutation rates, and the crossover rates of the algorithm. These parameters are known to have a crucial influence on the optimization time, and thus need to be chosen carefully, a task that often requires substantial efforts. Moreover, the optimal parameters can change during the optimization process. It is therefore of great interest to design mechanisms that dynamically choose best-possible parameters. An example for such an update mechanism is the one-fifth success rule for step-size adaption in evolutionary strategies. While in continuous domains this principle is well understood also from a mathematical point of view, no comparable theory is available for problems in discrete domains. In this work we show that the one-fifth success rule can be effective also in discrete settings. We regard the (1+(λ,λ))(1+(\lambda,\lambda))~GA proposed in [Doerr/Doerr/Ebel: From black-box complexity to designing new genetic algorithms, TCS 2015]. We prove that if its population size is chosen according to the one-fifth success rule then the expected optimization time on \textsc{OneMax} is linear. This is better than what \emph{any} static population size λ\lambda can achieve and is asymptotically optimal also among all adaptive parameter choices.Comment: This is the full version of a paper that is to appear at GECCO 201

    Learning Mazes with Aliasing States: An LCS Algorithm with Associative Perception

    Get PDF
    Learning classifier systems (LCSs) belong to a class of algorithms based on the principle of self-organization and have frequently been applied to the task of solving mazes, an important type of reinforcement learning (RL) problem. Maze problems represent a simplified virtual model of real environments that can be used for developing core algorithms of many real-world applications related to the problem of navigation. However, the best achievements of LCSs in maze problems are still mostly bounded to non-aliasing environments, while LCS complexity seems to obstruct a proper analysis of the reasons of failure. We construct a new LCS agent that has a simpler and more transparent performance mechanism, but that can still solve mazes better than existing algorithms. We use the structure of a predictive LCS model, strip out the evolutionary mechanism, simplify the reinforcement learning procedure and equip the agent with the ability of associative perception, adopted from psychology. To improve our understanding of the nature and structure of maze environments, we analyze mazes used in research for the last two decades, introduce a set of maze complexity characteristics, and develop a set of new maze environments. We then run our new LCS with associative perception through the old and new aliasing mazes, which represent partially observable Markov decision problems (POMDP) and demonstrate that it performs at least as well as, and in some cases better than, other published systems
    corecore