228 research outputs found

    Integrating optics and microfluidics to automatically identify algae species

    Get PDF

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Heat Transfer in Energy Conversion Systems

    Get PDF
    In recent years, the scientific community’s interest towards efficient energy conversion systems has significantly increased. One of the reasons is certainly related to the change in the temperature of the planet, which appears to have increased by 0.76 °C with respect to pre-industrial levels, according to the Intergovernmental Panel on Climate Change (IPCC), and this trend has not yet been stopped. The European Union considers it vital to prevent global warming from exceeding 2 °C with respect to pre-industrial levels, since this phenomenon has been proven to result in irreversible and potentially catastrophic changes. These climate changes are mainly caused by the emissions of greenhouse gasses related to human activities, and can be drastically reduced by employing energy systems, for both heating and cooling of buildings and for power production, characterized by high efficiency levels and/or based on renewable energy sources. This Special Issue, published in the journal Energies, includes 12 contributions from across the world, including a wide range of applications, such as HT-PEMFC, district heating systems, a thermoelectric generator for industrial waste, artificial ground freezing, nanofluids, and others

    A Micro-milling cutting force and chip formation modeling approach for optimal process parameters selection

    Get PDF
    Las últimas décadas evidencian una demanda creciente por componentes miniaturizados con dimensiones reducidas y tolerancias estrechas, lo cual ha conllevado al desarrollo de la micro y nanotecnología. El micro-fresado, dentro de los procesos de micro-mecanizado, tiene el potencial de ser uno de los procesos de remoción de material más costo-efectivos y eficientes debido a su facilidad de aplicación, variedad de materiales de trabajo y flexibilidad geométrica. Se enfrenta a unos retos complejos debido al efecto de tamaño, vibraciones y otros factores incontrolables. Este estudio analiza dicho proceso orientado hacia desarrollar una mejor comprensión de la mecánica del micro-corte para ser aplicada en la optimización de parámetros de proceso. Se propone un acercamiento al modelado híbrido en forma novedosa, que permite una evaluación numérica a priori para evaluación de fuerzas y esfuerzos, combinado con experimentación para evaluar parámetros relevantes a la industria (formación de rebabas, desgaste de herramientas, entre otros).DoctoradoDoctor en Ingeniería Mecánic

    Digital CMOS ISFET architectures and algorithmic methods for point-of-care diagnostics

    Get PDF
    Over the past decade, the surge of infectious diseases outbreaks across the globe is redefining how healthcare is provided and delivered to patients, with a clear trend towards distributed diagnosis at the Point-of-Care (PoC). In this context, Ion-Sensitive Field Effect Transistors (ISFETs) fabricated on standard CMOS technology have emerged as a promising solution to achieve a precise, deliverable and inexpensive platform that could be deployed worldwide to provide a rapid diagnosis of infectious diseases. This thesis presents advancements for the future of ISFET-based PoC diagnostic platforms, proposing and implementing a set of hardware and software methodologies to overcome its main challenges and enhance its sensing capabilities. The first part of this thesis focuses on novel hardware architectures that enable direct integration with computational capabilities while providing pixel programmability and adaptability required to overcome pressing challenges on ISFET-based PoC platforms. This section explores oscillator-based ISFET architectures, a set of sensing front-ends that encodes the chemical information on the duty cycle of a PWM signal. Two initial architectures are proposed and fabricated in AMS 0.35um, confirming multiple degrees of programmability and potential for multi-sensing. One of these architectures is optimised to create a dual-sensing pixel capable of sensing both temperature and chemical information on the same spatial point while modulating this information simultaneously on a single waveform. This dual-sensing capability, verified in silico using TSMC 0.18um process, is vital for DNA-based diagnosis where protocols such as LAMP or PCR require precise thermal control. The COVID-19 pandemic highlighted the need for a deliverable diagnosis that perform nucleic acid amplification tests at the PoC, requiring minimal footprint by integrating sensing and computational capabilities. In response to this challenge, a paradigm shift is proposed, advocating for integrating all elements of the portable diagnostic platform under a single piece of silicon, realising a ``Diagnosis-on-a-Chip". This approach is enabled by a novel Digital ISFET Pixel that integrates both ADC and memory with sensing elements on each pixel, enhancing its parallelism. Furthermore, this architecture removes the need for external instrumentation or memories and facilitates its integration with computational capabilities on-chip, such as the proposed ARM Cortex M3 system. These computational capabilities need to be complemented with software methods that enable sensing enhancement and new applications using ISFET arrays. The second part of this thesis is devoted to these methods. Leveraging the programmability capabilities available on oscillator-based architectures, various digital signal processing algorithms are implemented to overcome the most urgent ISFET non-idealities, such as trapped charge, drift and chemical noise. These methods enable fast trapped charge cancellation and enhanced dynamic range through real-time drift compensation, achieving over 36 hours of continuous monitoring without pixel saturation. Furthermore, the recent development of data-driven models and software methods open a wide range of opportunities for ISFET sensing and beyond. In the last section of this thesis, two examples of these opportunities are explored: the optimisation of image compression algorithms on chemical images generated by an ultra-high frame-rate ISFET array; and a proposed paradigm shift on surface Electromyography (sEMG) signals, moving from data-harvesting to information-focused sensing. These examples represent an initial step forward on a journey towards a new generation of miniaturised, precise and efficient sensors for PoC diagnostics.Open Acces

    Micro/nanofluidic and lab-on-a-chip devices for biomedical applications

    Get PDF
    Micro/Nanofluidic and lab-on-a-chip devices have been increasingly used in biomedical research [1]. Because of their adaptability, feasibility, and cost-efficiency, these devices can revolutionize the future of preclinical technologies. Furthermore, they allow insights into the performance and toxic effects of responsive drug delivery nanocarriers to be obtained, which consequently allow the shortcomings of two/three-dimensional static cultures and animal testing to be overcome and help to reduce drug development costs and time [2–4]. With the constant advancements in biomedical technology, the development of enhanced microfluidic devices has accelerated, and numerous models have been reported. Given the multidisciplinary of this Special Issue (SI), papers on different subjects were published making a total of 14 contributions, 10 original research papers, and 4 review papers. The review paper of Ko et al. [1] provides a comprehensive overview of the significant advancements in engineered organ-on-a-chip research in a general way while in the review presented by Kanabekova and colleagues [2], a thorough analysis of microphysiological platforms used for modeling liver diseases can be found. To get a summary of the numerical models of microfluidic organ-on-a-chip devices developed in recent years, the review presented by Carvalho et al. [5] can be read. On the other hand, Maia et al. [6] report a systematic review of the diagnosis methods developed for COVID-19, providing an overview of the advancements made since the start of the pandemic. In the following, a brief summary of the research papers published in this SI will be presented, with organs-on-a-chip, microfluidic devices for detection, and device optimization having been identified as the main topics.info:eu-repo/semantics/publishedVersio

    2018 Abstract Book

    Get PDF

    3D printed microfluidic devices for particle and cell analysis

    Get PDF
    Particle/cell analysis is crucial in many health, industrial and environmental monitoring processes. Its integration into miniaturised lab-on-a-chip systems enables a host of portable technologies. However, current lab-on-a-chip lithographical fabrication methods are costly, time-consuming and restrictive in design, impeding their widespread implementation. This has led to 3D printing being explored as an alternative in recent years, due to its ability to form devices in a single step, and its three-dimensional freedom. [Continues.

    NASA Technology Plan 1998

    Get PDF
    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA
    • …
    corecore