767 research outputs found

    Ontology Based Approach for Services Information Discovery using Hybrid Self Adaptive Semantic Focused Crawler

    Get PDF
    Focused crawling is aimed at specifically searching out pages that are relevant to a predefined set of topics. Since ontology is an all around framed information representation, ontology based focused crawling methodologies have come into exploration. Crawling is one of the essential systems for building information stockpiles. The reason for semantic focused crawler is naturally finding, commenting and ordering the administration data with the Semantic Web advances. Here, a framework of a hybrid self-adaptive semantic focused crawler – HSASF crawler, with the inspiration driving viably discovering, and sorting out administration organization information over the Internet, by considering the three essential issues has been displayed. A semi-supervised system has been planned with the inspiration driving subsequently selecting the ideal limit values for each idea, while considering the optimal performance without considering the constraint of the preparation of data set. DOI: 10.17762/ijritcc2321-8169.15072

    A Word Embedding Based Approach for Focused Web Crawling Using the Recurrent Neural Network

    Get PDF
    Learning-based focused crawlers download relevant uniform resource locators (URLs) from the web for a specific topic. Several studies have used the term frequency-inverse document frequency (TF-IDF) weighted cosine vector as an input feature vector for learning algorithms. TF-IDF-based crawlers calculate the relevance of a web page only if a topic word co-occurs on the said page, failing which it is considered irrelevant. Similarity is not considered even if a synonym of a term co-occurs on a web page. To resolve this challenge, this paper proposes a new methodology that integrates the Adagrad-optimized Skip Gram Negative Sampling (A-SGNS)-based word embedding and the Recurrent Neural Network (RNN).The cosine similarity is calculated from the word embedding matrix to form a feature vector that is given as an input to the RNN to predict the relevance of the website. The performance of the proposed method is evaluated using the harvest rate (hr) and irrelevance ratio (ir). The proposed methodology outperforms existing methodologies with an average harvest rate of 0.42 and irrelevance ratio of 0.58

    Cloud service discovery and analysis: a unified framework

    Get PDF
    Over the past few years, cloud computing has been more and more attractive as a new computing paradigm due to high flexibility for provisioning on-demand computing resources that are used as services through the Internet. The issues around cloud service discovery have considered by many researchers in the recent years. However, in cloud computing, with the highly dynamic, distributed, the lack of standardized description languages, diverse services offered at different levels and non-transparent nature of cloud services, this research area has gained a significant attention. Robust cloud service discovery approaches will assist the promotion and growth of cloud service customers and providers, but will also provide a meaningful contribution to the acceptance and development of cloud computing. In this dissertation, we have proposed an automated cloud service discovery approach of cloud services. We have also conducted extensive experiments to validate our proposed approach. The results demonstrate the applicability of our approach and its capability of effectively identifying and categorizing cloud services on the Internet. Firstly, we develop a novel approach to build cloud service ontology. Cloud service ontology initially is built based on the National Institute of Standards and Technology (NIST) cloud computing standard. Then, we add new concepts to ontology by automatically analyzing real cloud services based on cloud service ontology Algorithm. We also propose cloud service categorization that use Term Frequency to weigh cloud service ontology concepts and calculate cosine similarity to measure the similarity between cloud services. The cloud service categorization algorithm is able to categorize cloud services to clusters for effective categorization of cloud services. In addition, we use Machine Learning techniques to identify cloud service in real environment. Our cloud service identifier is built by utilizing cloud service features extracted from the real cloud service providers. We determine several features such as similarity function, semantic ontology, cloud service description and cloud services components, to be used effectively in identifying cloud service on the Web. Also, we build a unified model to expose the cloud service’s features to a cloud service search user to ease the process of searching and comparison among a large amount of cloud services by building cloud service’s profile. Furthermore, we particularly develop a cloud service discovery Engine that has capability to crawl the Web automatically and collect cloud services. The collected datasets include meta-data of nearly 7,500 real-world cloud services providers and nearly 15,000 services (2.45GB). The experimental results show that our approach i) is able to effectively build automatic cloud service ontology, ii) is robust in identifying cloud service in real environment and iii) is more scalable in providing more details about cloud services.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 201

    Survey on Mining Effective Information Using Ontology Based semantic web Crawler Mechanism

    Get PDF
    Due to usable of copious data on web, searching has a consequential impact. Ongoing study place emphasis on the relevancy and robustness of the data found, as the invent patterns proximity is far from the probe. In spite of their relevance pages for some investigate topic, the results are mammoth that needed and are explored. Also the users’ perspective differs in timely manner from topic to topic. In general terms ones’ want is others unnecessary. Crawling algorithms play crucial role in selecting the pages that satisfies the users’ needs. This paper reviews the research work on web crawling algorithms used on searching

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    A novel defense mechanism against web crawler intrusion

    Get PDF
    Web robots also known as crawlers or spiders are used by search engines, hackers and spammers to gather information about web pages. Timely detection and prevention of unwanted crawlers increases privacy and security of websites. In this research, a novel method to identify web crawlers is proposed to prevent unwanted crawler to access websites. The proposed method suggests a five-factor identification process to detect unwanted crawlers. This study provides the pretest and posttest results along with a systematic evaluation of web pages with the proposed identification technique versus web pages without the proposed identification process. An experiment was performed with repeated measures for two groups with each group containing ninety web pages. The outputs of the logistic regression analysis of treatment and control groups confirm the novel five-factor identification process as an effective mechanism to prevent unwanted web crawlers. This study concluded that the proposed five distinct identifier process is a very effective technique as demonstrated by a successful outcome

    An Overlay Architecture for Personalized Object Access and Sharing in a Peer-to-Peer Environment

    Get PDF
    Due to its exponential growth and decentralized nature, the Internet has evolved into a chaotic repository, making it difficult for users to discover and access resources of interest to them. As a result, users have to deal with the problem of information overload. The Semantic Web's emergence provides Internet users with the ability to associate explicit, self-described semantics with resources. This ability will facilitate in turn the development of ontology-based resource discovery tools to help users retrieve information in an efficient manner. However, it is widely believed that the Semantic Web of the future will be a complex web of smaller ontologies, mostly created by various groups of web users who share a similar interest, referred to as a Community of Interest. This thesis proposes a solution to the information overload problem using a user driven framework, referred to as a Personalized Web, that allows individual users to organize themselves into Communities of Interests based on ontologies agreed upon by all community members. Within this framework, users can define and augment their personalized views of the Internet by associating specific properties and attributes to resources and defining constraint-functions and rules that govern the interpretation of the semantics associated with the resources. Such views can then be used to capture the user's interests and integrate these views into a user-defined Personalized Web. As a proof of concept, a Personalized Web architecture that employs ontology-based semantics and a structured Peer-to-Peer overlay network to provide a foundation of semantically-based resource indexing and advertising is developed. In order to investigate mechanisms that support the resource advertising and retrieval of the Personalized Web architecture, three agent-driven advertising and retrieval schemes, the Aggressive scheme, the Crawler-based scheme, and the Minimum-Cover-Rule scheme, were implemented and evaluated in both stable and churn environments. In addition to the development of a Personalized Web architecture that deals with typical web resources, this thesis used a case study to explore the potential of the Personalized Web architecture to support future web service workflow applications. The results of this investigation demonstrated that the architecture can support the automation of service discovery, negotiation, and invocation, allowing service consumers to actualize a personalized web service workflow. Further investigation will be required to improve the performance of the automation and allow it to be performed in a secure and robust manner. In order to support the next generation Internet, further exploration will be needed for the development of a Personalized Web that includes ubiquitous and pervasive resources

    A customized semantic service retrieval methodology for the digital ecosystems environment

    Get PDF
    With the emergence of the Web and its pervasive intrusion on individuals, organizations, businesses etc., people now realize that they are living in a digital environment analogous to the ecological ecosystem. Consequently, no individual or organization can ignore the huge impact of the Web on social well-being, growth and prosperity, or the changes that it has brought about to the world economy, transforming it from a self-contained, isolated, and static environment to an open, connected, dynamic environment. Recently, the European Union initiated a research vision in relation to this ubiquitous digital environment, known as Digital (Business) Ecosystems. In the Digital Ecosystems environment, there exist ubiquitous and heterogeneous species, and ubiquitous, heterogeneous, context-dependent and dynamic services provided or requested by species. Nevertheless, existing commercial search engines lack sufficient semantic supports, which cannot be employed to disambiguate user queries and cannot provide trustworthy and reliable service retrieval. Furthermore, current semantic service retrieval research focuses on service retrieval in the Web service field, which cannot provide requested service retrieval functions that take into account the features of Digital Ecosystem services. Hence, in this thesis, we propose a customized semantic service retrieval methodology, enabling trustworthy and reliable service retrieval in the Digital Ecosystems environment, by considering the heterogeneous, context-dependent and dynamic nature of services and the heterogeneous and dynamic nature of service providers and service requesters in Digital Ecosystems.The customized semantic service retrieval methodology comprises: 1) a service information discovery, annotation and classification methodology; 2) a service retrieval methodology; 3) a service concept recommendation methodology; 4) a quality of service (QoS) evaluation and service ranking methodology; and 5) a service domain knowledge updating, and service-provider-based Service Description Entity (SDE) metadata publishing, maintenance and classification methodology.The service information discovery, annotation and classification methodology is designed for discovering ubiquitous service information from the Web, annotating the discovered service information with ontology mark-up languages, and classifying the annotated service information by means of specific service domain knowledge, taking into account the heterogeneous and context-dependent nature of Digital Ecosystem services and the heterogeneous nature of service providers. The methodology is realized by the prototype of a Semantic Crawler, the aim of which is to discover service advertisements and service provider profiles from webpages, and annotating the information with service domain ontologies.The service retrieval methodology enables service requesters to precisely retrieve the annotated service information, taking into account the heterogeneous nature of Digital Ecosystem service requesters. The methodology is presented by the prototype of a Service Search Engine. Since service requesters can be divided according to the group which has relevant knowledge with regard to their service requests, and the group which does not have relevant knowledge with regard to their service requests, we respectively provide two different service retrieval modules. The module for the first group enables service requesters to directly retrieve service information by querying its attributes. The module for the second group enables service requesters to interact with the search engine to denote their queries by means of service domain knowledge, and then retrieve service information based on the denoted queries.The service concept recommendation methodology concerns the issue of incomplete or incorrect queries. The methodology enables the search engine to recommend relevant concepts to service requesters, once they find that the service concepts eventually selected cannot be used to denote their service requests. We premise that there is some extent of overlap between the selected concepts and the concepts denoting service requests, as a result of the impact of service requesters’ understandings of service requests on the selected concepts by a series of human-computer interactions. Therefore, a semantic similarity model is designed that seeks semantically similar concepts based on selected concepts.The QoS evaluation and service ranking methodology is proposed to allow service requesters to evaluate the trustworthiness of a service advertisement and rank retrieved service advertisements based on their QoS values, taking into account the contextdependent nature of services in Digital Ecosystems. The core of this methodology is an extended CCCI (Correlation of Interaction, Correlation of Criterion, Clarity of Criterion, and Importance of Criterion) metrics, which allows a service requester to evaluate the performance of a service provider in a service transaction based on QoS evaluation criteria in a specific service domain. The evaluation result is then incorporated with the previous results to produce the eventual QoS value of the service advertisement in a service domain. Service requesters can rank service advertisements by considering their QoS values under each criterion in a service domain.The methodology for service domain knowledge updating, service-provider-based SDE metadata publishing, maintenance, and classification is initiated to allow: 1) knowledge users to update service domain ontologies employed in the service retrieval methodology, taking into account the dynamic nature of services in Digital Ecosystems; and 2) service providers to update their service profiles and manually annotate their published service advertisements by means of service domain knowledge, taking into account the dynamic nature of service providers in Digital Ecosystems. The methodology for service domain knowledge updating is realized by a voting system for any proposals for changes in service domain knowledge, and by assigning different weights to the votes of domain experts and normal users.In order to validate the customized semantic service retrieval methodology, we build a prototype – a Customized Semantic Service Search Engine. Based on the prototype, we test the mathematical algorithms involved in the methodology by a simulation approach and validate the proposed functions of the methodology by a functional testing approach

    D4.1. Technologies and tools for corpus creation, normalization and annotation

    Get PDF
    The objectives of the Corpus Acquisition and Annotation (CAA) subsystem are the acquisition and processing of monolingual and bilingual language resources (LRs) required in the PANACEA context. Therefore, the CAA subsystem includes: i) a Corpus Acquisition Component (CAC) for extracting monolingual and bilingual data from the web, ii) a component for cleanup and normalization (CNC) of these data and iii) a text processing component (TPC) which consists of NLP tools including modules for sentence splitting, POS tagging, lemmatization, parsing and named entity recognition
    corecore