3,377 research outputs found

    Comparison of multiobjective optimization methods applied to urban drainage adaptation problems

    Get PDF
     This is the author accepted manuscript. The final version is available from American Society of Civil Engineers via the DOI in this recordThis article compares three multiobjective evolutionary algorithms (MOEAs) with application to the urban drainage system (UDS) adaptation of a capital city in North China. Particularly, we consider the well-known NSGA-II, the built-in solver in the MATLAB Global Optimization Toolbox (MLOT), and a newly-developed hybrid MOEA called GALAXY. Avariety of parameter combinations of each MOEA is systemically applied to examine their impacts on optimization efficiency. Results suggest that the traditional MOEAs suffer from severe parameterization issues. For NSGA-II, the distribution indexes of crossover and mutation operators were found to have dominant impacts, while the probabilities of the two operators played a secondary role. For MLOT, the two-point and the scattered crossover operators accompanied by the adaptive-feasible mutation operator gained the best Pareto fronts, provided the crossover fraction is set to lower values. In contrast, GALAXY was the most robust and easy-to-use tool among the three MOEAs, owing to its elimination of various associated parameters of searching operators for substantially alleviating the parameterization issues. This study contributes to the literature by showing how to improve the robustness of identifying optimal solutions through better selection of operators and associated parameter settings for real-world UDS applications.National Natural Science Foundation of ChinaPublic Welfare Research and Ability Construction Project of Guangdong Province, ChinaScience and Technology Program of Guangzhou, ChinaWater Conservancy Science and Technology Innovation Project of Guangdong Province, Chin

    GALAXY: A new hybrid MOEA for the Optimal Design of Water Distribution Systems

    Get PDF
    This is the final version of the article. Available from American Geophysical Union via the DOI in this record.The first author would like to appreciate the financial support given by both the University of Exeter and the China Scholarship Council (CSC) toward the PhD research. We also appreciate the three anonymous reviewers, who help improve the quality of this paper substantially. The source code of the latest versions of NSGA-II and ε-MOEA can be downloaded from the official website of Kanpur Genetic Algorithms Laboratory via http://www.iitk.ac.in/kangal/codes.shtml. The description of each benchmark problem used in this paper, including the input file of EPANET and the associated best-known Pareto front, can be accessed from the following link to the Centre for Water Systems (http://tinyurl.com/cwsbenchmarks/). GALAXY can be accessed via http://tinyurl.com/cws-galaxy

    Parameter identification of the STICS crop model, using an accelerated formal MCMC approach

    Full text link
    This study presents a Bayesian approach for the parameters’ identification of the STICS crop model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm. The posterior distributions of nine specific crop parameters of the STICS model were sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L.) culture. The results obtained with the DREAM algorithm were initially compared to those obtained with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types of likelihood functions implemented within the DREAM algorithm were compared, namely the standard least square, the weighted least square, and a transformed likelihood function that makes explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood function allowed taking into account both noise on measurements and heteroscedasticity which are regularly encountered in crop modellingPeer reviewe

    Intelligent fault detection system for microgrids

    Get PDF
    The dynamic features of microgrid operation, such as on-grid/off-grid operation mode, the intermittency of distributed generators, and its dynamic topology due to its ability to reconfigure itself, cause misfiring of conventional protection schemes. To solve this issue, adaptive protection schemes that use robust communication systems have been proposed for the protection of microgrids. However, the cost of this solution is significantly high. This paper presented an intelligent fault detection (FD) system for microgrids on the basis of local measurements and machine learning (ML) techniques. This proposed FD system provided a smart level to intelligent electronic devices (IED) installed on the microgrid through the integration of ML models. This allowed each IED to autonomously determine if a fault occurred on the microgrid, eliminating the requirement of robust communication infrastructure between IEDs for microgrid protection. Additionally, the proposed system presented a methodology composed of four stages, which allowed its implementation in any microgrid. In addition, each stage provided important recommendations for the proper use of ML techniques on the protection problem. The proposed FD system was validated on the modified IEEE 13-nodes test feeder. This took into consideration typical features of microgrids such as the load imbalance, reconfiguration, and off-grid/on-grid operation modes. The results demonstrated the flexibility and simplicity of the FD system in determining the best accuracy performance among several ML models. The ease of design’s implementation, formulation of parameters, and promising test results indicated the potential for real-life applications

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    On the need for the use of error-controlled finite element analyses in structural shape optimization processes

    Full text link
    This is the peer reviewed version of the following article: Ródenas, J. J., Bugeda, G., Albelda, J. and Oñate, E. (2011), On the need for the use of error-controlled finite element analyses in structural shape optimization processes. Int. J. Numer. Meth. Engng., 87: 1105–1126, which has been published in final form at http://dx.doi.org/10.1002/nme.3155. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.This work analyzes the influence of the discretization error associated with the finite element (FE) analyses of each design configuration proposed by the structural shape optimization algorithms over the behavior of the algorithm. The paper clearly shows that if FE analyses are not accurate enough, the final solution provided by the optimization algorithm will neither be optimal nor satisfy the constraints. The need for the use of adaptive FE analysis techniques in shape optimum design will be shown. The paper proposes the combination of two strategies to reduce the computational cost related to the use of mesh adaptivity in evolutionary optimization algorithms: (a) the use of an algorithm for the mesh generation by projection of the discretization error, which reduces the computational cost associated with the adaptive FE analysis of each geometrical configuration and (b) the successive increase of the required accuracy of the FE analyses in order to obtain a considerable reduction of the computational cost in the early stages of the optimization process.The second author is grateful for the financial support received for the development of this paper through the research project DPI2008-05250 of the Ministerio de Ciencia e Innovacion (Spain).Ródenas, J.; Bugeda Castelltort, G.; Albelda Vitoria, J.; Oñate Ibáñez De Navarra, E. (2011). On the need for the use of error-controlled finite element analyses in structural shape optimization processes. International Journal for Numerical Methods in Engineering. 87(11):1105-1126. https://doi.org/10.1002/nme.3155S11051126871

    Adaptive algorithms for history matching and uncertainty quantification

    Get PDF
    Numerical reservoir simulation models are the basis for many decisions in regard to predicting, optimising, and improving production performance of oil and gas reservoirs. History matching is required to calibrate models to the dynamic behaviour of the reservoir, due to the existence of uncertainty in model parameters. Finally a set of history matched models are used for reservoir performance prediction and economic and risk assessment of different development scenarios. Various algorithms are employed to search and sample parameter space in history matching and uncertainty quantification problems. The algorithm choice and implementation, as done through a number of control parameters, have a significant impact on effectiveness and efficiency of the algorithm and thus, the quality of results and the speed of the process. This thesis is concerned with investigation, development, and implementation of improved and adaptive algorithms for reservoir history matching and uncertainty quantification problems. A set of evolutionary algorithms are considered and applied to history matching. The shared characteristic of applied algorithms is adaptation by balancing exploration and exploitation of the search space, which can lead to improved convergence and diversity. This includes the use of estimation of distribution algorithms, which implicitly adapt their search mechanism to the characteristics of the problem. Hybridising them with genetic algorithms, multiobjective sorting algorithms, and real-coded, multi-model and multivariate Gaussian-based models can help these algorithms to adapt even more and improve their performance. Finally diversity measures are used to develop an explicit, adaptive algorithm and control the algorithm’s performance, based on the structure of the problem. Uncertainty quantification in a Bayesian framework can be carried out by resampling of the search space using Markov chain Monte-Carlo sampling algorithms. Common critiques of these are low efficiency and their need for control parameter tuning. A Metropolis-Hastings sampling algorithm with an adaptive multivariate Gaussian proposal distribution and a K-nearest neighbour approximation has been developed and applied
    corecore