1,661 research outputs found

    LTE-advanced self-organizing network conflicts and coordination algorithms

    Get PDF
    Self-organizing network (SON) functions have been introduced in the LTE and LTEAdvanced standards by the Third Generation Partnership Project as an excellent solution that promises enormous improvements in network performance. However, the most challenging issue in implementing SON functions in reality is the identification of the best possible interactions among simultaneously operating and even conflicting SON functions in order to guarantee robust, stable, and desired network operation. In this direction, the first step is the comprehensive modeling of various types of conflicts among SON functions, not only to acquire a detailed view of the problem, but also to pave the way for designing appropriate Self-Coordination mechanisms among SON functions. In this article we present a comprehensive classification of SON function conflicts, which leads the way for designing suitable conflict resolution solutions among SON functions and implementing SON in reality. Identifying conflicting and interfering relations among autonomous network management functionalities is a tremendously complex task. We demonstrate how analysis of fundamental trade-offs among performance metrics can us to the identification of potential conflicts. Moreover, we present analytical models of these conflicts using reference signal received power plots in multi-cell environments, which help to dig into the complex relations among SON functions. We identify potential chain reactions among SON function conflicts that can affect the concurrent operation of multiple SON functions in reality. Finally, we propose a selfcoordination framework for conflict resolution among multiple SON functions in LTE/LTEAdvanced networks, while highlighting a number of future research challenges for conflict-free operation of SON

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Self Organizing strategies for enhanced ICIC (eICIC)

    Get PDF
    Small cells have been identified as an effective solution for coping with the important traffic increase that is expected in the coming years. But this solution is accompanied by additional interference that needs to be mitigated. The enhanced Inter Cell Interference Coordination (eICIC) feature has been introduced to address the interference problem. eICIC involves two parameters which need to be optimized, namely the Cell Range Extension (CRE) of the small cells and the ABS ratio (ABSr) which defines a mute ratio for the macro cell to reduce the interference it produces. In this paper we propose self-optimizing algorithms for the eICIC. The CRE is adjusted by means of load balancing algorithm. The ABSr parameter is optimized by maximizing a proportional fair utility of user throughputs. The convergence of the algorithms is proven using stochastic approximation theorems. Numerical simulations illustrate the important performance gain brought about by the different algorithms.Comment: Submitted to WiOpt 201

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided
    • …
    corecore