7,691 research outputs found

    A Model of the Ventral Visual System Based on Temporal Stability and Local Memory

    Get PDF
    The cerebral cortex is a remarkably homogeneous structure suggesting a rather generic computational machinery. Indeed, under a variety of conditions, functions attributed to specialized areas can be supported by other regions. However, a host of studies have laid out an ever more detailed map of functional cortical areas. This leaves us with the puzzle of whether different cortical areas are intrinsically specialized, or whether they differ mostly by their position in the processing hierarchy and their inputs but apply the same computational principles. Here we show that the computational principle of optimal stability of sensory representations combined with local memory gives rise to a hierarchy of processing stages resembling the ventral visual pathway when it is exposed to continuous natural stimuli. Early processing stages show receptive fields similar to those observed in the primary visual cortex. Subsequent stages are selective for increasingly complex configurations of local features, as observed in higher visual areas. The last stage of the model displays place fields as observed in entorhinal cortex and hippocampus. The results suggest that functionally heterogeneous cortical areas can be generated by only a few computational principles and highlight the importance of the variability of the input signals in forming functional specialization

    Measuring and explaining cross-country immigration policies

    Get PDF
    The intensified international migration pressures of the recent decades prompted many developed countries to revise their immigration regulations and increase border controls. However, the development of these reforms as well as their effectiveness in actually managing new immigration flows remains poorly understood. The main reason is that migration regulations are hard to quantify, which has prevented the construction of a universal measure of migration policy. To fill this gap in the literature, we construct an indicator of the restrictiveness of immigration entry policy across countries as well as a more comprehensive indicator of migration policy that also accounts for staying requirements and regulations to foster integration. These indexes are then used to disentangle the factors determining the toughness of migration regulations. Our empirical framework combines elements from the median voter and interest group approach and accounts for cross-country correlation in migration policies. We find strong evidence of spatial correlation in particular in entry restrictiveness, while the impact of economic determinants of migration policy remains much more modest

    Motion adaptation and attention: A critical review and meta-analysis

    Get PDF
    The motion aftereffect (MAE) provides a behavioural probe into the mechanisms underlying motion perception, and has been used to study the effects of attention on motion processing. Visual attention can enhance detection and discrimination of selected visual signals. However, the relationship between attention and motion processing remains contentious: not all studies find that attention increases MAEs. Our meta-analysis reveals several factors that explain superficially discrepant findings. Across studies (37 independent samples, 76 effects) motion adaptation was significantly and substantially enhanced by attention (Cohen's d = 1.12, p < .0001). The effect more than doubled when adapting to translating (vs. expanding or rotating) motion. Other factors affecting the attention-MAE relationship included stimulus size, eccentricity and speed. By considering these behavioural analyses alongside neurophysiological work, we conclude that feature-based (rather than spatial, or object-based) attention is the biggest driver of sensory adaptation. Comparisons between naïve and non-naïve observers, different response paradigms, and assessment of 'file-drawer effects' indicate that neither response bias nor publication bias are likely to have significantly inflated the estimated effect of attention

    A Neural Model of Motion Processing and Visual Navigation by Cortical Area MST

    Full text link
    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually-guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals, and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves, and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.Defense Research Projects Agency (N00014-92-J-4015); Office of Naval Research (N00014-92-J-1309, N00014-95-1-0409, N00014-95-1-0657, N00014-91-J-4100, N0014-94-I-0597); Air Force Office of Scientific Research (F49620-92-J-0334)

    The impact of eye contact on the sense of agency

    Get PDF
    Recent research suggests that eye contact can lead to enhanced self-awareness. A related phenomenon, the sense of agency deals with the notion of the self as the origin of our actions. Possible links between eye contact and agency have been so far neglected. Here, we investigated whether an implicit sense of agency could be modulated by eye gaze. We asked participants to respond (button press) to a face stimulus: looking or not at the participant (experiment 1); or displaying distinct eye gaze before or after a mask (experiment 2). After each trial, participants estimated the time between their key press and the ensuing effects. We found enhanced intentional binding for conditions that involved direct compared to averted gaze. This study supports the idea that eye contact is an important cue that affects complex cognitive processes and suggests that modulating self-processing can impact the sense of agency

    Probabilistic Motion Estimation Based on Temporal Coherence

    Full text link
    We develop a theory for the temporal integration of visual motion motivated by psychophysical experiments. The theory proposes that input data are temporally grouped and used to predict and estimate the motion flows in the image sequence. This temporal grouping can be considered a generalization of the data association techniques used by engineers to study motion sequences. Our temporal-grouping theory is expressed in terms of the Bayesian generalization of standard Kalman filtering. To implement the theory we derive a parallel network which shares some properties of cortical networks. Computer simulations of this network demonstrate that our theory qualitatively accounts for psychophysical experiments on motion occlusion and motion outliers.Comment: 40 pages, 7 figure

    The touch and zap method for in vivo whole-cell patch recording of intrinsic and visual responses of cortical neurons and Glial cells

    Get PDF
    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe "Touch and Zap", an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the "Touch". By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or "Zap", as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique
    corecore