57,793 research outputs found

    Structural Imbalance Aware Graph Augmentation Learning

    Full text link
    Graph machine learning (GML) has made great progress in node classification, link prediction, graph classification and so on. However, graphs in reality are often structurally imbalanced, that is, only a few hub nodes have a denser local structure and higher influence. The imbalance may compromise the robustness of existing GML models, especially in learning tail nodes. This paper proposes a selective graph augmentation method (SAug) to solve this problem. Firstly, a Pagerank-based sampling strategy is designed to identify hub nodes and tail nodes in the graph. Secondly, a selective augmentation strategy is proposed, which drops the noisy neighbors of hub nodes on one side, and discovers the latent neighbors and generates pseudo neighbors for tail nodes on the other side. It can also alleviate the structural imbalance between two types of nodes. Finally, a GNN model will be retrained on the augmented graph. Extensive experiments demonstrate that SAug can significantly improve the backbone GNNs and achieve superior performance to its competitors of graph augmentation methods and hub/tail aware methods.Comment: 13 pages, 11 figures, 7 table

    Active Semi-Supervised Learning Using Sampling Theory for Graph Signals

    Full text link
    We consider the problem of offline, pool-based active semi-supervised learning on graphs. This problem is important when the labeled data is scarce and expensive whereas unlabeled data is easily available. The data points are represented by the vertices of an undirected graph with the similarity between them captured by the edge weights. Given a target number of nodes to label, the goal is to choose those nodes that are most informative and then predict the unknown labels. We propose a novel framework for this problem based on our recent results on sampling theory for graph signals. A graph signal is a real-valued function defined on each node of the graph. A notion of frequency for such signals can be defined using the spectrum of the graph Laplacian matrix. The sampling theory for graph signals aims to extend the traditional Nyquist-Shannon sampling theory by allowing us to identify the class of graph signals that can be reconstructed from their values on a subset of vertices. This approach allows us to define a criterion for active learning based on sampling set selection which aims at maximizing the frequency of the signals that can be reconstructed from their samples on the set. Experiments show the effectiveness of our method.Comment: 10 pages, 6 figures, To appear in KDD'1
    • …
    corecore