4,352 research outputs found

    Selective retrieval of memory and concept sequences through neuro-windows

    Get PDF
    This letter presents a crosscorrelational associative memory model which realizes selective retrieval of pattern sequences. When hierarchically correlated sequences are memorized, sequences of the correlational centers can be defined as the concept sequences. The authors propose a modified neuro-window method which enables selective retrieval of memory sequences and concept sequences. It is also shown that the proposed model realizes capacity expansion of the memory which stores random sequences

    Selective Theta-Synchronization of Choice-Relevant Information Subserves Goal-Directed Behavior

    Get PDF
    Theta activity reflects a state of rhythmic modulation of excitability at the level of single neuron membranes, within local neuronal groups and between distant nodes of a neuronal network. A wealth of evidence has shown that during theta states distant neuronal groups synchronize, forming networks of spatially confined neuronal clusters at specific time periods during task performance. Here, we show that a functional commonality of networks engaging in theta rhythmic states is that they emerge around decision points, reflecting rhythmic synchronization of choice-relevant information. Decision points characterize a point in time shortly before a subject chooses to select one action over another, i.e., when automatic behavior is terminated and the organism reactivates multiple sources of information to evaluate the evidence for available choices. As such, decision processes require the coordinated retrieval of choice-relevant information including (i) the retrieval of stimulus evaluations (stimulus–reward associations) and reward expectancies about future outcomes, (ii) the retrieval of past and prospective memories (e.g., stimulus–stimulus associations), (iii) the reactivation of contextual task rule representations (e.g., stimulus–response mappings), along with (iv) an ongoing assessment of sensory evidence. An increasing number of studies reveal that retrieval of these multiple types of information proceeds within few theta cycles through synchronized spiking activity across limbic, striatal, and cortical processing nodes. The outlined evidence suggests that evolving spatially and temporally specific theta synchronization could serve as the critical correlate underlying the selection of a choice during goal-directed behavior

    Finding the engram.

    Get PDF
    Many attempts have been made to localize the physical trace of a memory, or engram, in the brain. However, until recently, engrams have remained largely elusive. In this Review, we develop four defining criteria that enable us to critically assess the recent progress that has been made towards finding the engram. Recent \u27capture\u27 studies use novel approaches to tag populations of neurons that are active during memory encoding, thereby allowing these engram-associated neurons to be manipulated at later times. We propose that findings from these capture studies represent considerable progress in allowing us to observe, erase and express the engram

    Dynamical principles in neuroscience

    Full text link
    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and Fundación BBVA

    Item parameters dissociate between expectation formats: a regression analysis of time-frequency decomposed EEG data

    Get PDF
    During language comprehension, semantic contextual information is used to generate expectations about upcoming items. This has been commonly studied through the N400 event-related potential (ERP), as a measure of facilitated lexical retrieval. However, the associative relationships in multi-word expressions (MWE) may enable the generation of a categorical expectation, leading to lexical retrieval before target word onset. Processing of the target word would thus reflect a target-identification mechanism, possibly indexed by a P3 ERP component. However, given their time overlap (200–500 ms post-stimulus onset), differentiating between N400/P3 ERP responses (averaged over multiple linguistically variable trials) is problematic. In the present study, we analyzed EEG data from a previous experiment, which compared ERP responses to highly expected words that were placed either in a MWE or a regular non-fixed compositional context, and to low predictability controls. We focused on oscillatory dynamics and regression analyses, in order to dissociate between the two contexts by modeling the electrophysiological response as a function of item-level parameters. A significant interaction between word position and condition was found in the regression model for power in a theta range (~7–9 Hz), providing evidence for the presence of qualitative differences between conditions. Power levels within this band were lower for MWE than compositional contexts when the target word appeared later on in the sentence, confirming that in the former lexical retrieval would have taken place before word onset. On the other hand, gamma-power (~50–70 Hz) was also modulated by predictability of the item in all conditions, which is interpreted as an index of a similar “matching” sub-step for both types of contexts, binding an expected representation and the external input

    Functional Brain Oscillations: How Oscillations Facilitate Information Representation and Code Memories

    Get PDF
    The overall aim of the modelling works within this thesis is to lend theoretical evidence to empirical findings from the brain oscillations literature. We therefore hope to solidify and expand the notion that precise spike timing through oscillatory mechanisms facilitates communication, learning, information processing and information representation within the brain. The primary hypothesis of this thesis is that it can be shown computationally that neural de-synchronisations can allow information content to emerge. We do this using two neural network models, the first of which shows how differential rates of neuronal firing can indicate when a single item is being actively represented. The second model expands this notion by creating a complimentary timing mechanism, thus enabling the emergence of qualitive temporal information when a pattern of items is being actively represented. The secondary hypothesis of this thesis is that it can be also be shown computationally that oscillations might play a functional role in learning. Both of the models presented within this thesis propose a sparsely coded and fast learning hippocampal region that engages in the binding of novel episodic information. The first model demonstrates how active cortical representations enable learning to occur in their hippocampal counterparts via a phase-dependent learning rule. The second model expands this notion, creating hierarchical temporal sequences to encode the relative temporal position of cortical representations. We demonstrate in both of these models, how cortical brain oscillations might provide a gating function to the representation of information, whilst complimentary hippocampal oscillations might provide distinct phasic reference points for learning

    Memory trace replay:The shaping of memory consolidation by neuromodulation

    Get PDF
    The consolidation of memories for places and events is thought to rely, at the network level, on the replay of spatially tuned neuronal firing patterns representing discrete places and spatial trajectories. This occurs in the hippocampal-entorhinal circuit during sharp wave ripple events (SWRs) that occur during sleep or rest. Here, we review theoretical models of lingering place cell excitability and behaviorally induced synaptic plasticity within cell assemblies to explain which sequences or places are replayed. We further provide new insights into how fluctuations in cholinergic tone during different behavioral states might shape the direction of replay and how dopaminergic release in response to novelty or reward can modulate which cell assemblies are replayed
    corecore