2,363 research outputs found

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Source and Physical-Layer Network Coding for Correlated Two-Way Relaying

    Full text link
    In this paper, we study a half-duplex two-way relay channel (TWRC) with correlated sources exchanging bidirectional information. In the case, when both sources have the knowledge of correlation statistics, a source compression with physical-layer network coding (SCPNC) scheme is proposed to perform the distributed compression at each source node. When only the relay has the knowledge of correlation statistics, we propose a relay compression with physical-layer network coding (RCPNC) scheme to compress the bidirectional messages at the relay. The closed-form block error rate (BLER) expressions of both schemes are derived and verified through simulations. It is shown that the proposed schemes achieve considerable improvements in both error performance and throughput compared with the conventional non-compression scheme in correlated two-way relay networks (CTWRNs).Comment: 15 pages, 6 figures. IET Communications, 201

    Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Full text link
    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tractable, we adopt a graph-based approach. We first establish the equivalence between the original problem and a maximum weighted clique problem in graph theory. A metaheuristic algorithm based on any colony optimization (ACO) is then employed to find the solution in polynomial time. Simulation results demonstrate that the proposed protocol together with the ACO algorithm significantly enhances the system total throughput.Comment: 27 pages, 8 figures, 2 table

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Truncated-ARQ aided adaptive network coding for cooperative two-way relaying networks: cross-layer design and analysis

    No full text
    Network Coding (NC) constitutes a promising technique of improving the throughput of relay-aided networks. In this context, we propose a cross-layer design for both amplifyand- forward (AF-) and decode-and-forward two-way relaying (DF-TWR) based on the NC technique invoked for improving the achievable throughput under specific Quality of Service (QoS) requirements, such as the maximum affordable delay and error rate.We intrinsically amalgamate adaptive Analog Network Coding (ANC) and Network Coded Modulation (NCM) with truncated Automatic Repeat reQuest (ARQ) operating at the different OSI layers. At the data-link layer, we design a pair of improved NC-based ARQ strategies based on the Stop-andwait and the Selective-repeat ARQ protocols. At the physical layer, adaptive ANC/NCM are invoked based on our approximate packet error ratio (PER). We demonstrate that the adaptive ANC design can be readily amalgamated with the proposed protocols. However, adaptive NC-QAM suffers from an SNR-loss, when the transmit rates of the pair of downlink (DL) channels spanning from the relay to the pair of destinations are different. Therefore we develop a novel transmission strategy for jointly selecting the optimal constellation sizes for both of the relay-to-destination links that have to be adapted to both pair of channel conditions. Finally, we analyze the attainable throughput, demonstrating that our truncated ARQ-aided adaptive ANC/NCM schemes attain considerable throughput gains over the schemes dispensing with ARQ, whilst our proposed scheme is capable of supporting bidirectional NC scenarios

    Reliable Physical Layer Network Coding

    Full text link
    When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is typically viewed as a hindrance to reliable communication over a network. However, using a recently developed coding strategy, interference can in fact be harnessed for network coding. In a wired network, (linear) network coding refers to each intermediate node taking its received packets, computing a linear combination over a finite field, and forwarding the outcome towards the destinations. Then, given an appropriate set of linear combinations, a destination can solve for its desired packets. For certain topologies, this strategy can attain significantly higher throughputs over routing-based strategies. Reliable physical layer network coding takes this idea one step further: using judiciously chosen linear error-correcting codes, intermediate nodes in a wireless network can directly recover linear combinations of the packets from the observed noisy superpositions of transmitted signals. Starting with some simple examples, this survey explores the core ideas behind this new technique and the possibilities it offers for communication over interference-limited wireless networks.Comment: 19 pages, 14 figures, survey paper to appear in Proceedings of the IEE

    Relay Selection with Network Coding in Two-Way Relay Channels

    Full text link
    In this paper, we consider the design of joint network coding (NC)and relay selection (RS) in two-way relay channels. In the proposed schemes, two users first sequentially broadcast their respective information to all the relays. We propose two RS schemes, a single relay selection with NC and a dual relay selection with NC. For both schemes, the selected relay(s) perform NC on the received signals sent from the two users and forward them to both users. The proposed schemes are analyzed and the exact bit error rate (BER) expressions are derived and verified through Monte Carlo simulations. It is shown that the dual relay selection with NC outperforms other considered relay selection schemes in two-way relay channels. The results also reveal that the proposed NC relay selection schemes provide a selection gain compared to a NC scheme with no relay selection, and a network coding gain relative to a conventional relay selection scheme with no NC.Comment: 11 pages, 5 figure
    corecore