168 research outputs found

    Large-area visually augmented navigation for autonomous underwater vehicles

    Get PDF
    Submitted to the Joint Program in Applied Ocean Science & Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2005This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting the inertial sensor information that is routinely available on such platforms. We adopt a systems-level approach exploiting the complementary aspects of inertial sensing and visual perception from a calibrated pose-instrumented platform. This systems-level strategy yields a robust solution to underwater imaging that overcomes many of the unique challenges of a marine environment (e.g., unstructured terrain, low-overlap imagery, moving light source). Our large-area SLAM algorithm recursively incorporates relative-pose constraints using a view-based representation that exploits exact sparsity in the Gaussian canonical form. This sparsity allows for efficient O(n) update complexity in the number of images composing the view-based map by utilizing recent multilevel relaxation techniques. We show that our algorithmic formulation is inherently sparse unlike other feature-based canonical SLAM algorithms, which impose sparseness via pruning approximations. In particular, we investigate the sparsification methodology employed by sparse extended information filters (SEIFs) and offer new insight as to why, and how, its approximation can lead to inconsistencies in the estimated state errors. Lastly, we present a novel algorithm for efficiently extracting consistent marginal covariances useful for data association from the information matrix. In summary, this thesis advances the current state-of-the-art in underwater visual navigation by demonstrating end-to-end automatic processing of the largest visually navigated dataset to date using data collected from a survey of the RMS Titanic (path length over 3 km and 3100 m2 of mapped area). This accomplishment embodies the summed contributions of this thesis to several current SLAM research issues including scalability, 6 degree of freedom motion, unstructured environments, and visual perception.This work was funded in part by the CenSSIS ERC of the National Science Foundation under grant EEC-9986821, in part by the Woods Hole Oceanographic Institution through a grant from the Penzance Foundation, and in part by a NDSEG Fellowship awarded through the Department of Defense

    Mapping of complex marine environments using an unmanned surface craft

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 185-199).Recent technology has combined accurate GPS localization with mapping to build 3D maps in a diverse range of terrestrial environments, but the mapping of marine environments lags behind. This is particularly true in shallow water and coastal areas with man-made structures such as bridges, piers, and marinas, which can pose formidable challenges to autonomous underwater vehicle (AUV) operations. In this thesis, we propose a new approach for mapping shallow water marine environments, combining data from both above and below the water in a robust probabilistic state estimation framework. The ability to rapidly acquire detailed maps of these environments would have many applications, including surveillance, environmental monitoring, forensic search, and disaster recovery. Whereas most recent AUV mapping research has been limited to open waters, far from man-made surface structures, in our work we focus on complex shallow water environments, such as rivers and harbors, where man-made structures block GPS signals and pose hazards to navigation. Our goal is to enable an autonomous surface craft to combine data from the heterogeneous environments above and below the water surface - as if the water were drained, and we had a complete integrated model of the marine environment, with full visibility. To tackle this problem, we propose a new framework for 3D SLAM in marine environments that combines data obtained concurrently from above and below the water in a robust probabilistic state estimation framework. Our work makes systems, algorithmic, and experimental contributions in perceptual robotics for the marine environment. We have created a novel Autonomous Surface Vehicle (ASV), equipped with substantial onboard computation and an extensive sensor suite that includes three SICK lidars, a Blueview MB2250 imaging sonar, a Doppler Velocity Log, and an integrated global positioning system/inertial measurement unit (GPS/IMU) device. The data from these sensors is processed in a hybrid metric/topological SLAM state estimation framework. A key challenge to mapping is extracting effective constraints from 3D lidar data despite GPS loss and reacquisition. This was achieved by developing a GPS trust engine that uses a semi-supervised learning classifier to ascertain the validity of GPS information for different segments of the vehicle trajectory. This eliminates the troublesome effects of multipath on the vehicle trajectory estimate, and provides cues for submap decomposition. Localization from lidar point clouds is performed using octrees combined with Iterative Closest Point (ICP) matching, which provides constraints between submaps both within and across different mapping sessions. Submap positions are optimized via least squares optimization of the graph of constraints, to achieve global alignment. The global vehicle trajectory is used for subsea sonar bathymetric map generation and for mesh reconstruction from lidar data for 3D visualization of above-water structures. We present experimental results in the vicinity of several structures spanning or along the Charles River between Boston and Cambridge, MA. The Harvard and Longfellow Bridges, three sailing pavilions and a yacht club provide structures of interest, having both extensive superstructure and subsurface foundations. To quantitatively assess the mapping error, we compare against a georeferenced model of the Harvard Bridge using blueprints from the Library of Congress. Our results demonstrate the potential of this new approach to achieve robust and efficient model capture for complex shallow-water marine environments. Future work aims to incorporate autonomy for path planning of a region of interest while performing collision avoidance to enable fully autonomous surveys that achieve full sensor coverage of a complete marine environment.by Jacques Chadwick Leedekerken.Ph.D

    A review of laser scanning for geological and geotechnical applications in underground mining

    Full text link
    Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment. Although there are several published articles on laser scanning, there is a need to review them in the context of underground mining applications. To this end, a holistic review of laser scanning is presented including progress in 3D scanning systems, data capture/processing techniques and primary applications in underground mines. Laser scanning technology has advanced significantly in terms of mobility and mapping, but there are constraints in coherent and consistent data collection at certain mines due to feature deficiency, dynamics, and environmental influences such as dust and water. Studies suggest that laser scanning has matured over the years for change detection, clearance measurements and structure mapping applications. However, there is scope for improvements in lithology identification, surface parameter measurements, logistic tracking and autonomous navigation. Laser scanning has the potential to provide real-time solutions but the lack of infrastructure in underground mines for data transfer, geodetic networking and processing capacity remain limiting factors. Nevertheless, laser scanners are becoming an integral part of mine automation thanks to their affordability, accuracy and mobility, which should support their widespread usage in years to come

    Sparse Bayesian information filters for localization and mapping

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008This thesis formulates an estimation framework for Simultaneous Localization and Mapping (SLAM) that addresses the problem of scalability in large environments. We describe an estimation-theoretic algorithm that achieves significant gains in computational efficiency while maintaining consistent estimates for the vehicle pose and the map of the environment. We specifically address the feature-based SLAM problem in which the robot represents the environment as a collection of landmarks. The thesis takes a Bayesian approach whereby we maintain a joint posterior over the vehicle pose and feature states, conditioned upon measurement data. We model the distribution as Gaussian and parametrize the posterior in the canonical form, in terms of the information (inverse covariance) matrix. When sparse, this representation is amenable to computationally efficient Bayesian SLAM filtering. However, while a large majority of the elements within the normalized information matrix are very small in magnitude, it is fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability benefits of a sparse parametrization by explicitly pruning these weak links in an effort to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information Filter (SEIF), which has laid much of the groundwork concerning the computational benefits of the sparse canonical form. The thesis performs a detailed analysis of the process by which the SEIF approximates the sparsity of the information matrix and reveals key insights into the consequences of different sparsification strategies. We demonstrate that the SEIF yields a sparse approximation to the posterior that is inconsistent, suffering from exaggerated confidence estimates. This overconfidence has detrimental effects on important aspects of the SLAM process and affects the higher level goal of producing accurate maps for subsequent localization and path planning. This thesis proposes an alternative scalable filter that maintains sparsity while preserving the consistency of the distribution. We leverage insights into the natural structure of the feature-based canonical parametrization and derive a method that actively maintains an exactly sparse posterior. Our algorithm exploits the structure of the parametrization to achieve gains in efficiency, with a computational cost that scales linearly with the size of the map. Unlike similar techniques that sacrifice consistency for improved scalability, our algorithm performs inference over a posterior that is conservative relative to the nominal Gaussian distribution. Consequently, we preserve the consistency of the pose and map estimates and avoid the effects of an overconfident posterior. We demonstrate our filter alongside the SEIF and the standard EKF both in simulation as well as on two real-world datasets. While we maintain the computational advantages of an exactly sparse representation, the results show convincingly that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the original Gaussian distribution as produced by the EKF, but at much less computational expense. The thesis concludes with an extension of our SLAM filter to a complex underwater environment. We describe a systems-level framework for localization and mapping relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped with a forward-looking sonar. The approach utilizes our filter to fuse measurements of vehicle attitude and motion from onboard sensors with data from sonar images of the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a ship hull

    RANSAC for Robotic Applications: A Survey

    Get PDF
    Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics, for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for estimating the best transformation between different camera views. In this paper, we present a review of the current state of the art of RANSAC family methods with a special interest in applications in robotics.This work has been partially funded by the Basque Government, Spain, under Research Teams Grant number IT1427-22 and under ELKARTEK LANVERSO Grant number KK-2022/00065; the Spanish Ministry of Science (MCIU), the State Research Agency (AEI), the European Regional Development Fund (FEDER), under Grant number PID2021-122402OB-C21 (MCIU/AEI/FEDER, UE); and the Spanish Ministry of Science, Innovation and Universities, under Grant FPU18/04737

    Localization, Mapping and SLAM in Marine and Underwater Environments

    Get PDF
    The use of robots in marine and underwater applications is growing rapidly. These applications share the common requirement of modeling the environment and estimating the robots’ pose. Although there are several mapping, SLAM, target detection and localization methods, marine and underwater environments have several challenging characteristics, such as poor visibility, water currents, communication issues, sonar inaccuracies or unstructured environments, that have to be considered. The purpose of this Special Issue is to present the current research trends in the topics of underwater localization, mapping, SLAM, and target detection and localization. To this end, we have collected seven articles from leading researchers in the field, and present the different approaches and methods currently being investigated to improve the performance of underwater robots

    Robust Visual Odometry and Dynamic Scene Modelling

    Get PDF
    Image-based estimation of camera trajectory, known as visual odometry (VO), has been a popular solution for robot navigation in the past decade due to its low-cost and widely applicable properties. The problem of tracking self-motion as well as motion of objects in the scene using information from a camera is known as multi-body visual odometry and is a challenging task. The performance of VO is heavily sensitive to poor imaging conditions (i.e., direct sunlight, shadow and image blur), which limits its feasibility in many challenging scenarios. Current VO solutions can provide accurate camera motion estimation in largely static scene. However, the deployment of robotic systems in our daily lives requires systems to work in significantly more complex, dynamic environment. This thesis aims to develop robust VO solutions against two challenging cases, underwater and highly dynamic environments, by extensively analyzing and overcoming the difficulties in both cases to achieve accurate ego-motion estimation. Furthermore, to better understand and exploit dynamic scene information, this thesis also investigates the motion of moving objects in dynamic scene, and presents a novel way to integrate ego and object motion estimation into a single framework. In particular, the problem of VO in underwater is challenging due to poor imaging condition and inconsistent motion caused by water flow. This thesis intensively tests and evaluates possible solutions to the mentioned issues, and proposes a stereo underwater VO system that is able to robustly and accurately localize the autonomous underwater vehicle (AUV). Visual odometry in dynamic environment is challenging because dynamic parts of the scene violate the static world assumption fundamental in most classical visual odometry algorithms. If moving parts of a scene dominate the static scene, off-the-shelf VO systems either fail completely or return poor quality trajectory estimation. Most existing techniques try to simplify the problem by removing dynamic information. Arguably, in most scenarios, the dynamics corresponds to a finite number of individual objects that are rigid or piecewise rigid, and their motions can be tracked and estimated in the same way as the ego-motion. With this consideration, the thesis proposes a brand new way to model and estimate object motion, and introduces a novel multi-body VO system that addresses the problem of tracking of both ego and object motion in dynamic outdoor scenes. Based on the proposed multi-body VO framework, this thesis also exploits the spatial and temporal relationships between the camera and object motions, as well as static and dynamic structures, to obtain more consistent and accurate estimations. To this end, the thesis introduces a novel visual dynamic object-aware SLAM system, that is able to achieve robust multiple moving objects tracking, accurate estimation of full SE(3) object motions, and extract inherent linear velocity information of moving objects, along with an accurate robot localisation and mapping of environment structure. The performance of the proposed system is demonstrated on real datasets, showing its capability to resolve rigid object motion estimation and yielding results that outperform state-of-the-art algorithms by an order of magnitude in urban driving scenarios

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties
    • …
    corecore