12,363 research outputs found

    A NEW METHOD FOR DESIGN OF SELECTIVE DIGITAL IIR FILTERS WITH ARBITRARY PHASE

    Get PDF
    In this paper the design of selective digital filters that consists of parallel connection of two all-pass sub-filters is presented. The phase of this filters has given arbitrary shape ϕ(ω) in both pass-band and stop-band. The proposed method allows the calculation of selective filters with elliptic-like magnitude characteristic. Equations given in the paper are general and suitable for design of filters with arbitrary phase. The efficiency of the method is demonstrated on design of filters with piecewise linear and quadratic phase

    Ring Resonators with Sagnac Loops for Photonic Processing in DWDM Backbone Networks

    Get PDF
    In this paper, optical configurations based on ring resonators (RR) with an internal Sagnac (SG) loop in the feedback path, are analyzed in terms of their amplitude response and dispersive properties for filtering and chromatic dispersion managing in digital transmission systems over amplified single- mode fiber (SMF) spans in DWDM backbone networks. Design issues for the architecture as regards quadratic dispersion and magnitude distortion are provided. The RR+SG compound filter provides frequency tunability of the amplitude and dispersion peaks by adjusting a coupling coefficient of an optical coupler, with no need for using integrated thermo-optic nor current- injection based phase shifters. The configuration can be employed as an additional structure for a general RR-based design and synthesis architecture, allowing bandwidth increase of dispersion compensators and flexibility. The performance of a compound filter consisting of a two RR in series stage and a RR+SG filter are reported as a more compact and effective solution for existing multi-channel SMF backbone links operating at high bit rates. Design guidelines of an integrated ring resonator based on polymer technology for showing feasibility of the proposal is reported.This work was partially supported by Spanish CICYT (TEC2006-13273-C03-03-MIC), European project NoE EPhoton/One+, CAM (FACTOTEM-CM:S-0505/ESP/000417), FENIS-CCG06-UC3MITIC-0619.Publicad

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    MIMO decision feedback equalization from an H∞ perspective

    Get PDF
    We approach the multiple input multiple output (MIMO) decision feedback equalization (DFE) problem in digital communications from an H∞ estimation point of view. Using the standard (and simplifying) assumption that all previous decisions are correct, we obtain an explicit parameterization of all H∞ optimal DFEs. In particular, we show that, under the above assumption, minimum mean square error (MMSE) DFEs are H∞ optimal. The H∞ approach also suggests a method for dealing with errors in previous decisions

    Exploiting Image Local And Nonlocal Consistency For Mixed Gaussian-Impulse Noise Removal

    Full text link
    Most existing image denoising algorithms can only deal with a single type of noise, which violates the fact that the noisy observed images in practice are often suffered from more than one type of noise during the process of acquisition and transmission. In this paper, we propose a new variational algorithm for mixed Gaussian-impulse noise removal by exploiting image local consistency and nonlocal consistency simultaneously. Specifically, the local consistency is measured by a hyper-Laplace prior, enforcing the local smoothness of images, while the nonlocal consistency is measured by three-dimensional sparsity of similar blocks, enforcing the nonlocal self-similarity of natural images. Moreover, a Split-Bregman based technique is developed to solve the above optimization problem efficiently. Extensive experiments for mixed Gaussian plus impulse noise show that significant performance improvements over the current state-of-the-art schemes have been achieved, which substantiates the effectiveness of the proposed algorithm.Comment: 6 pages, 4 figures, 3 tables, to be published at IEEE Int. Conf. on Multimedia & Expo (ICME) 201
    corecore