3,177 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Rollback recovery with low overhead for fault tolerance in mobile ad hoc networks

    Get PDF
    AbstractMobile ad hoc networks (MANETs) have significantly enhanced the wireless networks by eliminating the need for any fixed infrastructure. Hence, these are increasingly being used for expanding the computing capacity of existing networks or for implementation of autonomous mobile computing Grids. However, the fragile nature of MANETs makes the constituent nodes susceptible to failures and the computing potential of these networks can be utilized only if they are fault tolerant. The technique of checkpointing based rollback recovery has been used effectively for fault tolerance in static and cellular mobile systems; yet, the implementation of existing protocols for MANETs is not straightforward. The paper presents a novel rollback recovery protocol for handling the failures of mobile nodes in a MANET using checkpointing and sender based message logging. The proposed protocol utilizes the routing protocol existing in the network for implementing a low overhead recovery mechanism. The presented recovery procedure at a node is completely domino-free and asynchronous. The protocol is resilient to the dynamic characteristics of the MANET; allowing a distributed application to be executed independently without access to any wired Grid or cellular network access points. We also present an algorithm to record a consistent global snapshot of the MANET

    A cluster based communication architecture for distributed applications in mobile ad hoc networks

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2006Includes bibliographical references (leaves: 63-69)Text in English; Abstract: Turkish and Englishx, 85 leavesIn this thesis, we aim to design and implement three protocols on a hierarchical architecture to solve the balanced clustering, backbone formation and distributed mutual exclusion problems for mobile ad hoc network(MANET)s. Our ¯rst goal is to cluster the MANET into balanced partitions. Clustering is a widely used approach to ease implemen-tation of various problems such as routing and resource management in MANETs. We propose the Merging Clustering Algorithm(MCA) for clustering in MANETs that merges clusters to form higher level of clusters by increasing their levels. Secondly, we aim to con-struct a directed ring topology across clusterheads which were selected by MCA. Lastly, we implement the distributed mutual exclusion algorithm based on Ricart-Agrawala algo-rithm for MANETs(Mobile RA). Each cluster is represented by a coordinator node on the ring which implements distributed mutual exclusion algorithm on behalf of any member in the cluster it represents. We show the operations of the algorithms, analyze their time and message complexities and provide results in the simulation environment of ns2

    Distributed Deterministic Broadcasting in Uniform-Power Ad Hoc Wireless Networks

    Full text link
    Development of many futuristic technologies, such as MANET, VANET, iThings, nano-devices, depend on efficient distributed communication protocols in multi-hop ad hoc networks. A vast majority of research in this area focus on design heuristic protocols, and analyze their performance by simulations on networks generated randomly or obtained in practical measurements of some (usually small-size) wireless networks. %some library. Moreover, they often assume access to truly random sources, which is often not reasonable in case of wireless devices. In this work we use a formal framework to study the problem of broadcasting and its time complexity in any two dimensional Euclidean wireless network with uniform transmission powers. For the analysis, we consider two popular models of ad hoc networks based on the Signal-to-Interference-and-Noise Ratio (SINR): one with opportunistic links, and the other with randomly disturbed SINR. In the former model, we show that one of our algorithms accomplishes broadcasting in O(Dlog2n)O(D\log^2 n) rounds, where nn is the number of nodes and DD is the diameter of the network. If nodes know a priori the granularity gg of the network, i.e., the inverse of the maximum transmission range over the minimum distance between any two stations, a modification of this algorithm accomplishes broadcasting in O(Dlogg)O(D\log g) rounds. Finally, we modify both algorithms to make them efficient in the latter model with randomly disturbed SINR, with only logarithmic growth of performance. Ours are the first provably efficient and well-scalable, under the two models, distributed deterministic solutions for the broadcast task.Comment: arXiv admin note: substantial text overlap with arXiv:1207.673

    Efficiency-complexity evaluation methods of routing algorithms in mobile ad hoc networks

    Get PDF
    Routing in multidomain and multilayer networks is the subject of constant theoretical research, with special emphasis on routing optimization algorithms based on several criteria. Such research results in new proposals. The basic task of the algorithm is to perform the given task in a finite and reasonable period of time and with reasonable resource requirements. When new solutions are compared with previous solutions, it is necessary to consider as much information as possible about the characteristics and differences between these algorithms, which ultimately determines the degree of success of the algorithm. Routing algorithms depend on the goals to be achieved and most often solve a certain group of problems with certain simplifications of the overall problem and to the detriment of performance that are not crucial for a given routing optimization problem. Therefore, it is necessary to have acceptable methods for efficiency-complexity evaluation methods of routing algorithms with certain, universally applicable, metrics. Several theoretical approaches, including graph theory, optimization theory, complexity theory, allow approaches to compare the algorithms and the results achieved with the help of these algorithms

    MPR+SP: Towards a Unified MPR-based MANET Extension for OSPF

    Get PDF
    International audienceHeterogeneous networks and wireless components - fixed routers as well as mobile routers - emerge as wireless mesh networks are being deployed. Such heterogeneity is bound to become more and more present in the near future as mobile ad hoc networking becomes a reality. While it is possible to cope with heterogeneity by employing different routing protocols for the fixed / wired part and for the wireless / ad hoc part of the network, this may lead to sub-optimal performance, e.g. by way of longer routing paths due to these routing protocols sharing prefixes and "connecting" the network only at distinct gateways between the two routing domains. Thus, the establishment of a single unified routing domain, and the use of a single routing protocol, for such heterogeneous networks is desired. OSPF is a natural candidate for this task, due to its wide deployment, its modularity and its similarity with the popular ad hoc routing protocol OLSR. Multiple OSPF extensions for MANETs have therefore been specified by the IETF. This paper introduces a novel OSPF extension for operation on ad hoc networks, MPR+SP, and compares it with the existing OSPF extensions via simulations, which show that MPR+SP outperforms prior art

    On forwarding state control in VPN multicast based on MPLS multipoint LSPs

    Get PDF
    This work is at: 2012 IEEE 13th International Conference on High Performance Switching and Routing took place June 24-27,2012 in Belgrade, Serbia. Web to event: http://hpsr2012.etf.bg.ac.rs/index.phpThe demand for multicast-capable VPN services, like Virtual Private LAN Service (VPLS), has grown quickly in the last years. In order to save bandwidth, MPLS point-to-multipoint LSPs could be used, but the VPN-specific state information to be handled inside the network may exceed the capacity of core nodes. A well-known solution for this is to aggregate the multicast/broadcast traffic of multiple VPNs into shared p2mp LSP trees. In shared trees, although some bandwidth is wasted because a fraction of the packets are delivered to non-member leaves (either not in the VPN broadcast or multicast group), there is wide working range where a good state vs. bandwidth trade-off is achieved. In this paper we enhance and improve previous works that analyze this trade-off. We propose new techniques for multicast traffic aggregation of VPNs in MPLS-based networks, with the objective of observing the behavior of the aggregation philosophy for different aggregation degrees, which should be very useful for network design and deployment purposes. We assess the aggregation heuristics over different reference networks and VPN geographic distributions. Simulations give a quantitative indication of the relevance of intelligent aggregation, of geographical distribution and group sizes.The work described in this paper was carried out with the support of MEDIANET PRICIT 2009/TIC-1468, from the Community of Madrid; and Fundación Carolina, Spain.Publicad
    corecore