839 research outputs found

    Designing a minimal reactive goalie for the RoboCup SPL

    Get PDF
    This paper presents the basic design and implementation of a goalkeeper made according to the regulations of the two-legged Standard Platform League of the RoboCup Federation. The paper describes the perceptive schemas created using the architecture of the TeamChaos-URJC team as well as the action schemes designed to create a minimal reactive goalie. This player was tested in the 2009 German Open international competition. The results obtained there are analyzed and the future works derived from that analysis are presente

    Motion representation with spiking neural networks for grasping and manipulation

    Get PDF
    Die Natur bedient sich Millionen von Jahren der Evolution, um adaptive physikalische Systeme mit effizienten Steuerungsstrategien zu erzeugen. Im Gegensatz zur konventionellen Robotik plant der Mensch nicht einfach eine Bewegung und führt sie aus, sondern es gibt eine Kombination aus mehreren Regelkreisen, die zusammenarbeiten, um den Arm zu bewegen und ein Objekt mit der Hand zu greifen. Mit der Forschung an humanoiden und biologisch inspirierten Robotern werden komplexe kinematische Strukturen und komplizierte Aktor- und Sensorsysteme entwickelt. Diese Systeme sind schwierig zu steuern und zu programmieren, und die klassischen Methoden der Robotik können deren Stärken nicht immer optimal ausnutzen. Die neurowissenschaftliche Forschung hat große Fortschritte beim Verständnis der verschiedenen Gehirnregionen und ihrer entsprechenden Funktionen gemacht. Dennoch basieren die meisten Modelle auf groß angelegten Simulationen, die sich auf die Reproduktion der Konnektivität und der statistischen neuronalen Aktivität konzentrieren. Dies öffnet eine Lücke bei der Anwendung verschiedener Paradigmen, um Gehirnmechanismen und Lernprinzipien zu validieren und Funktionsmodelle zur Steuerung von Robotern zu entwickeln. Ein vielversprechendes Paradigma ist die ereignis-basierte Berechnung mit SNNs. SNNs fokussieren sich auf die biologischen Aspekte von Neuronen und replizieren deren Arbeitsweise. Sie sind für spike- basierte Kommunikation ausgelegt und ermöglichen die Erforschung von Mechanismen des Gehirns für das Lernen mittels neuronaler Plastizität. Spike-basierte Kommunikation nutzt hoch parallelisierten Hardware-Optimierungen mittels neuromorpher Chips, die einen geringen Energieverbrauch und schnelle lokale Operationen ermöglichen. In dieser Arbeit werden verschiedene SNNs zur Durchführung von Bewegungss- teuerung für Manipulations- und Greifaufgaben mit einem Roboterarm und einer anthropomorphen Hand vorgestellt. Diese basieren auf biologisch inspirierten funktionalen Modellen des menschlichen Gehirns. Ein Motor-Primitiv wird auf parametrische Weise mit einem Aktivierungsparameter und einer Abbildungsfunktion auf die Roboterkinematik übertragen. Die Topologie des SNNs spiegelt die kinematische Struktur des Roboters wider. Die Steuerung des Roboters erfolgt über das Joint Position Interface. Um komplexe Bewegungen und Verhaltensweisen modellieren zu können, werden die Primitive in verschiedenen Schichten einer Hierarchie angeordnet. Dies ermöglicht die Kombination und Parametrisierung der Primitiven und die Wiederverwendung von einfachen Primitiven für verschiedene Bewegungen. Es gibt verschiedene Aktivierungsmechanismen für den Parameter, der ein Motorprimitiv steuert — willkürliche, rhythmische und reflexartige. Außerdem bestehen verschiedene Möglichkeiten neue Motorprimitive entweder online oder offline zu lernen. Die Bewegung kann entweder als Funktion modelliert oder durch Imitation der menschlichen Ausführung gelernt werden. Die SNNs können in andere Steuerungssysteme integriert oder mit anderen SNNs kombiniert werden. Die Berechnung der inversen Kinematik oder die Validierung von Konfigurationen für die Planung ist nicht erforderlich, da der Motorprimitivraum nur durchführbare Bewegungen hat und keine ungültigen Konfigurationen enthält. Für die Evaluierung wurden folgende Szenarien betrachtet, das Zeigen auf verschiedene Ziele, das Verfolgen einer Trajektorie, das Ausführen von rhythmischen oder sich wiederholenden Bewegungen, das Ausführen von Reflexen und das Greifen von einfachen Objekten. Zusätzlich werden die Modelle des Arms und der Hand kombiniert und erweitert, um die mehrbeinige Fortbewegung als Anwendungsfall der Steuerungsarchitektur mit Motorprimitiven zu modellieren. Als Anwendungen für einen Arm (3 DoFs) wurden die Erzeugung von Zeigebewegungen und das perzeptionsgetriebene Erreichen von Zielen modelliert. Zur Erzeugung von Zeigebewegun- gen wurde ein Basisprimitiv, das auf den Mittelpunkt einer Ebene zeigt, offline mit vier Korrekturprimitiven kombiniert, die eine neue Trajektorie erzeugen. Für das wahrnehmungsgesteuerte Erreichen eines Ziels werden drei Primitive online kombiniert unter Verwendung eines Zielsignals. Als Anwendungen für eine Fünf-Finger-Hand (9 DoFs) wurden individuelle Finger-aktivierungen und Soft-Grasping mit nachgiebiger Steuerung modelliert. Die Greif- bewegungen werden mit Motor-Primitiven in einer Hierarchie modelliert, wobei die Finger-Primitive die Synergien zwischen den Gelenken und die Hand-Primitive die unterschiedlichen Affordanzen zur Koordination der Finger darstellen. Für jeden Finger werden zwei Reflexe hinzugefügt, zum Aktivieren oder Stoppen der Bewegung bei Kontakt und zum Aktivieren der nachgiebigen Steuerung. Dieser Ansatz bietet enorme Flexibilität, da Motorprimitive wiederverwendet, parametrisiert und auf unterschiedliche Weise kombiniert werden können. Neue Primitive können definiert oder gelernt werden. Ein wichtiger Aspekt dieser Arbeit ist, dass im Gegensatz zu Deep Learning und End-to-End-Lernmethoden, keine umfangreichen Datensätze benötigt werden, um neue Bewegungen zu lernen. Durch die Verwendung von Motorprimitiven kann der gleiche Modellierungsansatz für verschiedene Roboter verwendet werden, indem die Abbildung der Primitive auf die Roboterkinematik neu definiert wird. Die Experimente zeigen, dass durch Motor- primitive die Motorsteuerung für die Manipulation, das Greifen und die Lokomotion vereinfacht werden kann. SNNs für Robotikanwendungen ist immer noch ein Diskussionspunkt. Es gibt keinen State-of-the-Art-Lernalgorithmus, es gibt kein Framework ähnlich dem für Deep Learning, und die Parametrisierung von SNNs ist eine Kunst. Nichtsdestotrotz können Robotikanwendungen - wie Manipulation und Greifen - Benchmarks und realistische Szenarien liefern, um neurowissenschaftliche Modelle zu validieren. Außerdem kann die Robotik die Möglichkeiten der ereignis- basierten Berechnung mit SNNs und neuromorpher Hardware nutzen. Die physikalis- che Nachbildung eines biologischen Systems, das vollständig mit SNNs implementiert und auf echten Robotern evaluiert wurde, kann neue Erkenntnisse darüber liefern, wie der Mensch die Motorsteuerung und Sensorverarbeitung durchführt und wie diese in der Robotik angewendet werden können. Modellfreie Bewegungssteuerungen, inspiriert von den Mechanismen des menschlichen Gehirns, können die Programmierung von Robotern verbessern, indem sie die Steuerung adaptiver und flexibler machen

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 309)

    Get PDF
    This bibliography lists 136 reports, articles and other documents introduced into the NASA scientific and technical information system in February, 1988

    Evoking agency: Attention model and behavior control in a robotic art installation

    Get PDF
    Robotic embodiments of artificial agents seem to reinstate a body-mind dualism as consequence of their technical implementation, but could this supposition be a misconception? The authors present their artistic, scientific and engineering work on a robotic installation, the Articulated Head, and its perception-action control system, the Thinking Head Attention Model and Behavioral System (THAMBS). The authors propose that agency emerges from the interplay of the robot’s behavior and the environment and that, in the system’s interaction with humans, it is to the same degree attributed to the robot as it is grounded in the robot’s actions: Agency cannot be instilled; it needs to be evoked

    Locomotion Control of Hexapod Walking Robot with Four Degrees of Freedom per Leg

    Get PDF
    V této práci představujeme nového šestinohého robota jménem HAntR, kterého jsme vytvořili dle potřeb Laboratoře výpočetní robotiky Centra umělé inteligence fakulty Elektrotechnické Českého vysokého učení technického v Praze. Jeho hlavním účelem jest vylepšit schopnosti pohybu v těžkém terénu původního robotu přidáním čtvrtého stupně volnosti každé noze. Na základě nově navržené nohy jsme také přepracovali celé tělo robotu tak, aby splnilo i další požadavky, jako například menší rozměry, či možnost osazení alespoň šesti Lithium-Iontovými monočlánky. V práci pečlivě popisujeme motivace a úvahy, které nás k výslednému návrhu vedly. Uvádíme řešení přímé i inverzní kinematické úlohy řešené pomocí podmínky na ideální orientaci konce nohy a uvažující i důležité kinematické singularity. Navržený robot byl vyzkoušen v několika experimentech, při kterých byl použit námi navržený řídicí systém napsaný v jazyce C++. Ukázalo se, že HAntR vydrží díky zvýšené energetické hustotě a lepšímu rozkladu sil v končetinách autonomně fungovat přes hodinu. Robot je také schopen jít rychlostí až 0.42m/s, což předčí mnohé srovnatelné roboty. Při experimentu, kdy robot stál na nakloněné rovině, bylo prokázáno zlepšení oproti předchozímu robotu. A také jsme dle pokynů této práce potvrdili, že i HAntR je schopen adaptivní chůze spoléhající pouze na poziční zpětnou vazbu.In this thesis a novel six-legged robot called HAntR is presented. The robot was developed according to needs of the Robotics Laboratory, at the Artificial Intelligent Center, Faculty of Electrical Engineering, Czech Technical University in Prague. Its main purpose is enhancing rough-terrain movement capabilities by upgrading a former design by adding fourth degree of freedom to each leg. We also revised robot torso to fit new leg design and incorporate other requirements such as smaller dimensions with space for at least six Lithium-Ion cells. We thoroughly describe motivations and considerations that led us to the presented particular solution. Further, the solutions of forward and inverse kinematic tasks with partial orientation constraint and important singularities avoidance are presented. The proposed design has been evaluated in several experimental deployments, which utilised developed software controller written in C++. Endurance tests showed, that HAntR is able to remotely operate for over an hour thanks to increased energy density. Maximal speed test resulted to 0.42m/s during tripod gait, which outpaces most of the comparable robotic platforms. Experiment where HAntR stood on platform with varying inclination showed qualitative improvement against former robot. Finally, in accord with the thesis assignment, we proved that HAntR is able to perform walking with adaptive gait using positional feedback only

    Marine Vessel Inspection as a Novel Field for Service Robotics: A Contribution to Systems, Control Methods and Semantic Perception Algorithms.

    Get PDF
    This cumulative thesis introduces a novel field for service robotics: the inspection of marine vessels using mobile inspection robots. In this thesis, three scientific contributions are provided and experimentally verified in the field of marine inspection, but are not limited to this type of application. The inspection scenario is merely a golden thread to combine the cumulative scientific results presented in this thesis. The first contribution is an adaptive, proprioceptive control approach for hybrid leg-wheel robots, such as the robot ASGUARD described in this thesis. The robot is able to deal with rough terrain and stairs, due to the control concept introduced in this thesis. The proposed system is a suitable platform to move inside the cargo holds of bulk carriers and to deliver visual data from inside the hold. Additionally, the proposed system also has stair climbing abilities, allowing the system to move between different decks. The robot adapts its gait pattern dynamically based on proprioceptive data received from the joint motors and based on the pitch and tilt angle of the robot's body during locomotion. The second major contribution of the thesis is an independent ship inspection system, consisting of a magnetic wall climbing robot for bulkhead inspection, a particle filter based localization method, and a spatial content management system (SCMS) for spatial inspection data representation and organization. The system described in this work was evaluated in several laboratory experiments and field trials on two different marine vessels in close collaboration with ship surveyors. The third scientific contribution of the thesis is a novel approach to structural classification using semantic perception approaches. By these methods, a structured environment can be semantically annotated, based on the spatial relationships between spatial entities and spatial features. This method was verified in the domain of indoor perception (logistics and household environment), for soil sample classification, and for the classification of the structural parts of a marine vessel. The proposed method allows the description of the structural parts of a cargo hold in order to localize the inspection robot or any detected damage. The algorithms proposed in this thesis are based on unorganized 3D point clouds, generated by a LIDAR within a ship's cargo hold. Two different semantic perception methods are proposed in this thesis. One approach is based on probabilistic constraint networks; the second approach is based on Fuzzy Description Logic and spatial reasoning using a spatial ontology about the environment
    corecore