837 research outputs found

    OFDM 시스템에서의 PAPR 감소를 위한 시간 영역의 큰 샘플을 이용한 저복잡도 PTS 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2018. 2. 노종선.In orthogonal frequency division multiplexing (OFDM) systems, high peak-to-average power ratio (PAPR) of OFDM signals is one of the most important problems. The high PAPR of OFDM signals causes serious nonlinear distortions in process of passing through high power amplifier (HPA). These distortions have a effect on in-band distortion and out-of-band radiation, which result in bit error rate degradation of received OFDM signals and interference in adjacent channel, respectively. In order to solve the PAPR problem of OFDM signals, various PAPR reduction schemes have been proposed. This dissertation includes research results on a kind of the PAPR reduction schemes, called the partial transmit sequence (PTS) for the OFDM systems. As a solution to the PAPR problem in OFDM systems, the PTS scheme is a fairly suitable scheme due to its PAPR reduction performance and distortionless characteristics. The PTS scheme generates several candidate OFDM signals to represent an original OFDM signal and selects one with the lowest PAPR among them for transmission. However, a serious problem in the PTS scheme is high computational complexity, which is mainly required to generate and process the candidate OFDM signals. In this dissertation, in an effort to reduce its computational complexity, new PTS schemes are proposed using dominant time-domain samples of OFDM signals. Dominant time-domain samples is a small number of samples of OFDM signals used to estimate PAPRs of candidate OFDM signals efficiently. In the first part of this dissertation, low-complexity PTS schemes are proposed using new selection methods of dominant time-domain samples. The proposed selection methods of dominant time-domain samples are based on selection methods of candidate samples in candidate OFDM signals. These methods select dominant time-domain samples with reduced computational complexity. The dominant time-domain samples selected by the proposed methods are used to estimate PAPRs of candidate OFDM signals with high accuracy. Therefore, the proposed low-complexity PTS schemes can achieve the optimal PAPR reduction performance with considerably reduced computational complexity. In the second part of this dissertation, improved PTS schemes are proposed to lower the computational complexity of previous PTS schemes further while maintaining high performance of PAPR reduction. Similar with the PTS schemes proposed in the previous part of this dissertation, the improved PTS schemes utilize dominant time-domain samples and candidate samples. However, they use more efficient methods, which select the candidate samples by adaptive method or multi-stage method to select dominant time-domain samples. Therefore, the improved PTS schemes reduce computational complexity further while maintaining the optimal PAPR reduction performance. The proposed PTS schemes in this dissertation use efficient methods to select dominant time-domain samples and thus they reduce the computational complexity considerably compared to previous PTS schemes. In addition, they achieve the optimal PAPR reduction performance, which is equivalent to that of the conventional PTS scheme with the low complexity. Due to the high performance and low complexity, they are fully expected to be used in the practical implementation of OFDM systems.1 INTRODUCTION 1 1.1 Introduction 1 1.2 Overview of Dissertation 4 2 PRELIMINARIES 6 2.1 OFDM and PAPR 6 2.2 High Power Amplifier Models 8 2.3 Analysis of PAPR 11 2.3.1 PAPR of OFDM Signal 11 2.3.2 PAPR and BER 17 2.4 Iterative PAPR Reduction Schemes 18 2.4.1 Clipping and Filtering 19 2.4.2 Tone Reservation 20 2.4.3 Active Constellation Extension 24 2.5 Probabilistic PAPR Reduction Scheme: Selective Mapping 26 2.6 Conventional PTS Scheme 32 2.7 Low-Complexity PTS Schemes Using Dominant Time-Domain Samples 34 2.7.1 Dominant Time-Domain Samples 34 2.7.2 Low-Complexity PTS Schemes Using Dominant Time-Domain Samples 37 3 LOW-COMPLEXITY PTS SCHEMES WITHNEWSELECTION METHODS OF DOMINANT TIME-DOMAIN SAMPLES 40 3.1 Notations 40 3.2 Selection Methods of Candidate Samples for Dominant Time-Domain Samples 41 3.3 Proposed Low-Complexity PTS Schemes 50 4 IMPROVED PTS SCHEMES WITH ADAPTIVE SELECTION METHODS OF DOMINANT TIME-DOMAIN SAMPLES 52 4.1 Adaptive Selection Methods of Candidate Samples for Dominant Time-Domain Samples 52 4.1.1 A1-SM with W = 2 53 4.1.2 A1-SM with W = 4 54 4.1.3 A2-SM with W = 2 55 4.2 Mathematical Representations for Probability Distribution of Cn 66 4.2.1 A1-SM with W = 2 69 4.2.2 A1-SM with W = 4 69 4.2.3 A2-SM with W = 2 69 4.3 Multi-Stage Selection Method of Dominant Time-Domain Samples 70 4.4 Proposed PTS Schemes with Adaptive Selection Methods for Dominant Time-Domain Samples 71 5 PERFORMANCE ANALYSIS 74 5.1 Computational Complexity 74 5.2 Simulation Results 76 6 CONCLUSIONS 85 Abstract (In Korean) 92Docto

    Frequency-Selective PAPR Reduction for OFDM

    Get PDF
    We study the peak-to-average power ratio (PAPR) problem in orthogonal frequency-division multiplexing (OFDM) systems. In conventional clipping and filtering based PAPR reduction techniques, clipping noise is allowed to spread over the whole active passband, thus degrading the transmit signal quality similarly at all active subcarriers. However, since modern radio networks support frequency-multiplexing of users and services with highly different quality-of-service expectations, clipping noise from PAPR reduction should be distributed unequally over the corresponding physical resource blocks (PRBs). To facilitate this, we present an efficient PAPR reduction technique, where clipping noise can be flexibly controlled and filtered inside the transmitter passband, allowing to control the transmitted signal quality per PRB. Numerical results are provided in 5G New Radio (NR) mobile network context, demonstrating the flexibility and efficiency of the proposed method.Comment: Accepted for publication as a Correspondence in the IEEE Transactions on Vehicular Technology in March 2019. This is the revised version of original manuscript, and it is in press at the momen

    Flexible Multi-Group Single-Carrier Modulation: Optimal Subcarrier Grouping and Rate Maximization

    Full text link
    Orthogonal frequency division multiplexing (OFDM) and single-carrier frequency domain equalization (SC-FDE) are two commonly adopted modulation schemes for frequency-selective channels. Compared to SC-FDE, OFDM generally achieves higher data rate, but at the cost of higher transmit signal peak-to-average power ratio (PAPR) that leads to lower power amplifier efficiency. This paper proposes a new modulation scheme, called flexible multi-group single-carrier (FMG-SC), which encapsulates both OFDM and SC-FDE as special cases, thus achieving more flexible rate-PAPR trade-offs between them. Specifically, a set of frequency subcarriers are flexibly divided into orthogonal groups based on their channel gains, and SC-FDE is applied over each of the groups to send different data streams in parallel. We aim to maximize the achievable sum-rate of all groups by optimizing the subcarrier-group mapping. We propose two low-complexity subcarrier grouping methods and show via simulation that they perform very close to the optimal grouping by exhaustive search. Simulation results also show the effectiveness of the proposed FMG-SC modulation scheme with optimized subcarrier grouping in improving the rate-PAPR trade-off over conventional OFDM and SC-FDE.Comment: Submitted for possible conference publicatio

    Waveform Design for 5G and Beyond

    Get PDF
    5G is envisioned to improve major key performance indicators (KPIs), such as peak data rate, spectral efficiency, power consumption, complexity, connection density, latency, and mobility. This chapter aims to provide a complete picture of the ongoing 5G waveform discussions and overviews the major candidates. It provides a brief description of the waveform and reveals the 5G use cases and waveform design requirements. The chapter presents the main features of cyclic prefix-orthogonal frequency-division multiplexing (CP-OFDM) that is deployed in 4G LTE systems. CP-OFDM is the baseline of the 5G waveform discussions since the performance of a new waveform is usually compared with it. The chapter examines the essential characteristics of the major waveform candidates along with the related advantages and disadvantages. It summarizes and compares the key features of different waveforms.Comment: 22 pages, 21 figures, 2 tables; accepted version (The URL for the final version: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch2

    Frequency-domain precoding for single carrier frequency-division multiple access

    Get PDF

    A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems

    Get PDF
    Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations
    corecore