146 research outputs found

    Parallel job scheduling policies to improve fairness : a case study.

    Full text link

    Backfilling with fairness and slack for parallel job scheduling

    Get PDF
    Parallel jobs have different runtimes and numbers of threads/processes. Thus, scheduling parallel jobs involves a packing problem. If jobs are packed as tightly as possible, utilization will be improved. Otherwise, some resources have to stay idle. The common solution to deal with idle resources is backfilling, which schedule smaller jobs submitted later to execute earlier as long as they do not postpone the first job or all the previous jobs in the waiting queue. Traditionally, backfilling uses first fit for idle resources, according to the submission order. However, in this case, better packing of jobs could be missed. Hence, we propose an algorithm which looks further ahead if significantly improving utilization. However at the same time, this could be unfair to some jobs ahead in the queue. So we use a delay factor as a constraint to limit unfairness. We propose a branch and bound algorithm which selects jobs for backfilling which keep utilization high, while trying to stay close to First-Come-First-Served (FCFS). We evaluate relative response time and utilization and compare to other backfilling approaches. The selection of jobs for backfilling to optimize for high utilization and low delay is implemented as an extension of the existing Scojo-PECT preemptive scheduler

    Dynamic Routing Algorithms and Methods for Controlling Traffic Flows of Cloud Applications and Services

    Get PDF
    Nowadays, we see a steady growth in the use of cloud computing in modern business. This enables to reduce the cost of IT infrastructure owning and operation; however, there are some issues related to the management of data processing centers.One of these issues is the effective use of companies’ computing and network resources. The goal of optimization is to manage the traffic in cloud applications and services within data centers.Taking into account the multitier architecture of modern data centers, we need to pay a special attention to this task. The advantage of modern infrastructure virtualization is the possibility to use software-defined networks and software-defined data storages. However, the existing optimization of algorithmic solutions does not take into account the specific features of the network traffic formation with multiple application types.The task of optimizing traffic distribution for cloud applications and services can be solved by using software-defined infrastructure of virtual data centers.We have developed a simulation model for the traffic in software-defined networks segments of data centers involved in processing user requests to cloud application and services within a network environment.Our model enables to implement the traffic management algorithm of cloud applications and to optimize the access to storage systems through the effective use of data transmission channels. During the experimental studies, we have found that the use of our algorithm enables to decrease the response time of cloud applications and services and, therefore, to increase the productivity of user requests processing and to reduce the number of refusals

    Scheduling algorithms to improve utilization in toroidal-interconnected systems

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 45-48).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.BlueGene/L is a massively parallel cellular architecture system with a toroidal inter-connect, currently being developed at the IBM T.J.Watson Research Center. Cellular architectures with a toroidal interconnect are effective at producing highly scalable computing systems, but typically require job partitions to be both rectangular and contiguous. These restrictions introduce fragmentation issues that affect the utilization of the system and the wait time and slowdown of queued jobs. To solve these fragmentation problems, this thesis presents the analysis and application of scheduling algorithms that augment a baseline first come first serve (FCFS) scheduler. Restricting ourselves to space-sharing techniques, which constitute a simpler solution to the requirements of cellular computing, we present simulation results for migration and backfilling techniques on BlueGene/L. These techniques are explored individually and jointly to determine their impact on the system. We develop an efficient Projection Of Partitions (POP) algorithm for determining the size of the largest free rectangular partition in a toroidal system, a basic operation that is the computational bottleneck for our scheduling algorithms. Our results demonstrate that migration may be effective for a pure FCFS scheduler but that backfilling produces even more benefits. We also show that migration may be combined with backfilling to produce more opportunities to better utilize a parallel machine.by Elie Krevat.M.Eng

    Cloud Resource Provisioning to Extend the Capacity of Local Resources in the Presence of Failures

    Full text link
    Abstract—In this paper, we investigate Cloud computing re-source provisioning to extend the computing capacity of local clusters in the presence of failures. We consider three steps in the resource provisioning including resource brokering, dispatch sequences, and scheduling. The proposed brokering strategy is based on the stochastic analysis of routing in distributed parallel queues and takes into account the response time of the Cloud provider and the local cluster while considering computing cost of both sides. Moreover, we propose dispatching with probabilistic and deterministic sequences to redirect requests to the resource providers. We also incorporate checkpointing in some well-known scheduling algorithms to provide a fault-tolerant environment. We propose two cost-aware and failure-aware provisioning poli-cies that can be utilized by an organization that operates a cluster managed by virtual machine technology and seeks to use resources from a public Cloud provider. Simulation results demonstrate that the proposed policies improve the response time of users ’ requests by a factor of 4.10 under a moderate load with a limited cost on a public Cloud

    DVFS power management in HPC systems

    Get PDF
    Recent increase in performance of High Performance Computing (HPC) systems has been followed by even higher increase in power consumption. Power draw of modern supercomputers leads to very high operating costs and reliability concerns. Furthermore, it has negative consequences on the environment. Accordingly, over the last decade there have been many works dealing with power/energy management in HPC systems. Since CPUs accounts for a high portion of the total system power consumption, our work aims at CPU power reduction. Dynamic Voltage Frequency Scaling (DVFS) is a widely used technique for CPU power management. Running an application at lower frequency/voltage reduces its power consumption. However, frequency scaling should be used carefully since it has negative effects on the application performance. We argue that the job scheduler level presents a good place for power management in an HPC center having in mind that a parallel job scheduler has a global overview of the entire system. In this thesis we propose power-aware parallel job scheduling policies where the scheduler determines the job CPU frequency, besides the job execution order. Based on the goal, the proposed policies can be classified into two groups: energy saving and power budgeting policies. The energy saving policies aim to reduce CPU energy consumption with a minimal job performance penalty. The first of the energy saving policies assigns the job frequency based on system utilization while the other makes job performance predictions. While for less loaded workloads these policies achieve energy savings, highly loaded workloads suffer from a substantial performance degradation because of higher job wait times due to an increase in load caused by longer job run times. Our results show higher potential of the DVFS technique when applied for power budgeting. The second group of policies are policies for power constrained systems. In contrast to the systems without a power limitation, in the case of a given power budget the DVFS technique even improves overall job performance reducing the average job wait time. This comes from a lower job power consumption that allows more jobs to run simultaneously. The first proposed policy from this group assigns CPU frequency using the job predicted performance and current power draw of already running jobs. The other power budgeting policy is based on an optimization problem which solution determines the job execution order, as well as power distribution among jobs selected for execution. This policy fully exploits available power and leads to further performance improvements. The last contribution of the thesis is an analysis of the DVFS technique potential for energyperformance trade-off in current and future HPC systems. Ongoing changes in technology decrease the DVFS applicability for energy savings but the technique still reduces power consumption making it useful for power constrained systems. In order to analyze DVFS potential, a model of frequency scaling impact on MPI application execution time has been proposed and validated against measurements on a large-scale system. This parametric analysis showed for which application/platform characteristic, frequency scaling leads to energy savings.El aumento de rendimiento que han experimentado los sistemas de altas prestaciones ha venido acompañado de un aumento aún mayor en el consumo de energía. El consumo de los supercomputadores actuales implica unos costes muy altos de funcionamiento. Estos costes no tienen simplemente implicaciones a nivel económico sino también implicaciones en el medio ambiente. Dado la importancia del problema, en los últimos tiempos se han realizado importantes esfuerzos de investigación para atacar el problema de la gestión eficiente de la energía que consumen los sistemas de supercomputación. Dado que la CPU supone un alto porcentaje del consumo total de un sistema, nuestro trabajo se centra en la reducción y gestión eficiente de la energía consumida por la CPU. En concreto, esta tesis se centra en la viabilidad de realizar esta gestión mediante la técnica de Dynamic Voltage Frequency Scalingi (DVFS), una técnica ampliamente utilizada con el objetivo de reducir el consumo energético de la CPU. Sin embargo, esta técnica puede implicar una reducción en el rendimiento de las aplicaciones que se ejecutan, ya que implica una reducción de la frecuencia. Si tenemos en cuenta que el contexto de esta tesis son sistemas de alta prestaciones, minimizar el impacto en la pérdida de rendimiento será uno de nuestros objetivos. Sin embargo, en nuestro contexto, el rendimiento de un trabajo viene determinado por dos factores, tiempo de ejecución y tiempo de espera, por lo que habrá que considerar los dos componentes. Los sistemas de supercomputación suelen estar gestionados por sistemas de colas. Los trabajos, dependiendo de la política que se aplique y el estado del sistema, deberán esperar más o menos tiempo antes de ser ejecutado. Dado las características del sistema objetivo de esta tesis, nosotros consideramos que el Planificador de trabajo (o Job Scheduler), es el mejor componente del sistema para incluir la gestión de la energía ya que es el único punto donde se tiene una visión global de todo el sistema. En este trabajo de tesis proponemos un conjunto de políticas de planificación que considerarán el consumo energético como un recurso más. Estas políticas decidirán que trabajo ejecutar, el número de cpus asignadas y la lista de cpus (y nodos) sino también la frecuencia a la que estas cpus se ejecutarán. Estas políticas estarán orientadas a dos objetivos: reducir la energía total consumida por un conjunto de trabajos y controlar en consumo puntual de un conjunto puntual para evitar saturaciones del sistema en aquellos centros que puedan tener una capacidad limitada (permanente o puntual). El primer grupo de políticas intentará reducir el consumo total minimizando el impacto en el rendimiento. En este grupo encontramos una primera política que asigna la frecuencia de las cpus en función de la utilización del sistema y una segunda que calcula una estimación de la penalización que sufrirá el trabajo que va a empezar para decidir si reducir o no la frecuencia. Estas políticas han mostrado unos resultados aceptables con sistemas poco cargados, pero han mostrado unas pérdidas de rendimiento significativas cuando el sistema está muy cargado. Estas pérdidas de rendimiento no han sido a nivel de incremento significativo del tiempo de ejecución de los trabajos, pero sí de las métricas de rendimiento que incluyen el tiempo de espera de los trabajos (habituales en este contexto). El segundo grupo de políticas, orientadas a sistemas con limitaciones en cuanto a la potencia que pueden consumir, han mostrado un gran potencial utilizando DVFS como mecanismo de gestión. En este caso, comparado con un sistema que no incluya esta gestión, han demostrado mejoras en el rendimiento ya que permiten ejecutar más trabajos de forma simultánea, reduciendo significativamente el tiempo de espera de los trabajos. En este segundo grupo proponemos una política basada en el rendimiento del trabajo que se va a ejecutar y una segunda que considera la asignación de todos los recursos como un problema de optimización lineal. Esta última política es la contribución más importante de la tesis ya que demuestra un buen comportamiento en todos los casos evaluados. La última contribución de la tesis es un estudio del potencial de DVFS como técnica de gestión de la energía en un futuro próximo, en función de un estudio de las características de las aplicaciones, de la reducción de DVFS en el consumo de la CPU y del peso de la CPU dentro de todo el sistema. Este estudio indica que la capacidad de DVFS de ahorrar energía será limitado pero sigue mostrando un gran potencial de cara al control del consumo energético
    corecore