6,656 research outputs found

    Focusing on the Big Picture: Insights into a Systems Approach to Deep Learning for Satellite Imagery

    Full text link
    Deep learning tasks are often complicated and require a variety of components working together efficiently to perform well. Due to the often large scale of these tasks, there is a necessity to iterate quickly in order to attempt a variety of methods and to find and fix bugs. While participating in IARPA's Functional Map of the World challenge, we identified challenges along the entire deep learning pipeline and found various solutions to these challenges. In this paper, we present the performance, engineering, and deep learning considerations with processing and modeling data, as well as underlying infrastructure considerations that support large-scale deep learning tasks. We also discuss insights and observations with regard to satellite imagery and deep learning for image classification.Comment: Accepted to IEEE Big Data 201

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357

    Lesion detection and Grading of Diabetic Retinopathy via Two-stages Deep Convolutional Neural Networks

    Full text link
    We propose an automatic diabetic retinopathy (DR) analysis algorithm based on two-stages deep convolutional neural networks (DCNN). Compared to existing DCNN-based DR detection methods, the proposed algorithm have the following advantages: (1) Our method can point out the location and type of lesions in the fundus images, as well as giving the severity grades of DR. Moreover, since retina lesions and DR severity appear with different scales in fundus images, the integration of both local and global networks learn more complete and specific features for DR analysis. (2) By introducing imbalanced weighting map, more attentions will be given to lesion patches for DR grading, which significantly improve the performance of the proposed algorithm. In this study, we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus images from Kaggle competition dataset. Under the guidance of clinical ophthalmologists, the experimental results show that our local lesion detection net achieve comparable performance with trained human observers, and the proposed imbalanced weighted scheme also be proved to significantly improve the capability of our DCNN-based DR grading algorithm

    OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scientific Papers using Piecewise Convolutional Neural Networks

    Full text link
    We describe our system for SemEval-2018 Shared Task on Semantic Relation Extraction and Classification in Scientific Papers where we focus on the Classification task. Our simple piecewise convolution neural encoder performs decently in an end to end manner. A simple inter-task data augmentation signifi- cantly boosts the performance of the model. Our best-performing systems stood 8th out of 20 teams on the classification task on noisy data and 12th out of 28 teams on the classification task on clean data.Comment: To apperar in Proceedings of International Workshop on Semantic Evaluation (SemEval-2018

    Looking Beyond Label Noise: Shifted Label Distribution Matters in Distantly Supervised Relation Extraction

    Full text link
    In recent years there is a surge of interest in applying distant supervision (DS) to automatically generate training data for relation extraction (RE). In this paper, we study the problem what limits the performance of DS-trained neural models, conduct thorough analyses, and identify a factor that can influence the performance greatly, shifted label distribution. Specifically, we found this problem commonly exists in real-world DS datasets, and without special handing, typical DS-RE models cannot automatically adapt to this shift, thus achieving deteriorated performance. To further validate our intuition, we develop a simple yet effective adaptation method for DS-trained models, bias adjustment, which updates models learned over the source domain (i.e., DS training set) with a label distribution estimated on the target domain (i.e., test set). Experiments demonstrate that bias adjustment achieves consistent performance gains on DS-trained models, especially on neural models, with an up to 23% relative F1 improvement, which verifies our assumptions. Our code and data can be found at \url{https://github.com/INK-USC/shifted-label-distribution}.Comment: 13 pages: 10 pages paper, 3 pages appendix. Appears at EMNLP 201
    • …
    corecore