2,371 research outputs found

    Fault-tolerant computer study

    Get PDF
    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed

    Optimizing resilience decision-support for natural gas networks under uncertainty

    Get PDF
    2019 Summer.Includes bibliographical references.Community resilience in the aftermath of a hazard requires the functionality of complex, interdependent infrastructure systems become operational in a timely manner to support social and economic institutions. In the context of risk management and community resilience, critical decisions should be made not only in the aftermath of a disaster in order to immediately respond to the destructive event and properly repair the damage, but preventive decisions should to be made in order to mitigate the adverse impacts of hazards prior to their occurrence. This involves significant uncertainty about the basic notion of the hazard itself, and usually involves mitigation strategies such as strengthening components or preparing required resources for post-event repairs. In essence, instances of risk management problems that encourage a framework for coupled decisions before and after events include modeling how to allocate resources before the disruptive event so as to maximize the efficiency for their distribution to repair in the aftermath of the event, and how to determine which network components require preventive investments in order to enhance their performance in case of an event. In this dissertation, a methodology is presented for optimal decision making for resilience assessment, seismic risk mitigation, and recovery of natural gas networks, taking into account their interdependency with some of the other systems within the community. In this regard, the natural gas and electric power networks of a virtual community were modeled with enough detail such that it enables assessment of natural gas network supply at the community level. The effect of the industrial makeup of a community on its natural gas recovery following an earthquake, as well as the effect of replacing conventional steel pipes with ductile HDPE pipelines as an effective mitigation strategy against seismic hazard are investigated. In addition, a multi objective optimization framework that integrates probabilistic seismic risk assessment of coupled infrastructure systems and evolutionary algorithms is proposed in order to determine cost-optimal decisions before and after a seismic event, with the objective of making the natural gas network recover more rapidly, and thus the community more resilient. Including bi-directional interdependencies between the natural gas and electric power network, strategic decisions are pursued regarding which distribution pipelines in the gas network should be retrofitted under budget constraints, with the objectives to minimizing the number of people without natural gas in the residential sector and business losses due to the lack of natural gas in non-residential sectors. Monte Carlo Simulation (MCS) is used in order to propagate uncertainties and Probabilistic Seismic Hazard Assessment (PSHA) is adopted in order to capture uncertainties in the seismic hazard with an approach to preserve spatial correlation. A non-dominated sorting genetic algorithm (NSGA-II) approach is utilized to solve the multi-objective optimization problem under study. The results prove the potential of the developed methodology to provide risk-informed decision support, while being able to deal with large-scale, interdependent complex infrastructure considering probabilistic seismic hazard scenarios

    RELIABILITY CENTERED MAINTENANCE (RCM) FOR ASSET MANAGEMENT IN ELECTRIC POWER DISTRIBUTION SYSTEM

    Get PDF
    The purpose of Maintenance is to extend equipment life time or at least the mean time to the next failure. Asset Maintenance, which is part of asset management, incurs expenditure but could result in very costly consequences if not performed or performed too little. It may not even be economical to perform it too frequently. The decision therefore, to eliminate or minimize the risk of equipment failure must not be based on trial and error as it was done in the past. In this thesis, an enhanced Reliability-Centered Maintenance (RCM) methodology that is based on a quantitative relationship between preventive maintenance (PM) performed at system component level and the overall system reliability was applied to identify the distribution components that are critical to system reliability. Maintenance model relating probability of failure to maintenance activity was developed for maintainable distribution components. The Markov maintenance Model developed was then used to predict the remaining life of transformer insulation for a selected distribution system. This Model incorporates various levels of insulation deterioration and minor maintenance state. If current state of insulation ageing is assumed from diagnostic testing and inspection, the Model is capable of computing the average time before insulation failure occurs. The results obtained from both Model simulation and the computer program of the mathematical formulation of the expected remaining life verified the mathematical analysis of the developed model in this thesis. The conclusion from this study shows that it is beneficial to base asset management decisions on a model that is verified with processed, analysed and tested outage data such as the model developed in this thesis

    A review on maintenance optimization

    Get PDF
    To this day, continuous developments of technical systems and increasing reliance on equipment have resulted in a growing importance of effective maintenance activities. During the last couple of decades, a substantial amount of research has been carried out on this topic. In this study we review more than two hundred papers on maintenance modeling and optimization that have appeared in the period 2001 to 2018. We begin by describing terms commonly used in the modeling process. Then, in our classification, we first distinguish single-unit and multi-unit systems. Further sub-classification follows, based on the state space of the deterioration process modeled. Other features that we discuss in this review are discrete and continuous condition monitoring, inspection, replacement, repair, and the various types of dependencies that may exist between units within systems. We end with the main developments during the review period and with potential future research directions
    • …
    corecore