2,582 research outputs found

    A selective learning method to improve the generalization of multilayer feedforward neural networks.

    Get PDF
    Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in many applications. However, the level of generalization is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this paper, we present a learning method that automatically selects the training patterns more appropriate to the new sample to be predicted. This training method follows a lazy learning strategy, in the sense that it builds approximations centered around the novel sample. The proposed method has been applied to three different domains: two artificial approximation problems and a real time series prediction problem. Results have been compared to standard backpropagation using the complete training data set and the new method shows better generalization abilities.Publicad

    A genetic-algorithms based evolutionary computational neural network for modelling spatial interaction data

    Get PDF
    Building a feedforward computational neural network model (CNN) involves two distinct tasks: determination of the network topology and weight estimation. The specification of a problem adequate network topology is a key issue and the primary focus of this contribution. Up to now, this issue has been either completely neglected in spatial application domains, or tackled by search heuristics (see Fischer and Gopal 1994). With the view of modelling interactions over geographic space, this paper considers this problem as a global optimization problem and proposes a novel approach that embeds backpropagation learning into the evolutionary paradigm of genetic algorithms. This is accomplished by interweaving a genetic search for finding an optimal CNN topology with gradient-based backpropagation learning for determining the network parameters. Thus, the model builder will be relieved of the burden of identifying appropriate CNN-topologies that will allow a problem to be solved with simple, but powerful learning mechanisms, such as backpropagation of gradient descent errors. The approach has been applied to the family of three inputs, single hidden layer, single output feedforward CNN models using interregional telecommunication traffic data for Austria, to illustrate its performance and to evaluate its robustness.

    Time series forecasting by means of evolutionary algorithms

    Get PDF
    IEEE International Parallel and Distributed Processing Symposium. Long Beach, CA, 26-30 March 2007Many physical and artificial phenomena can be described by time series. The prediction of such phenomenon could be as complex as interesting. There are many time series forecasting methods, but most of them only look for general rules to predict the whole series. The main problem is that time series usually have local behaviours that don't allow forecasting the time series by general rules. In this paper, a new method for finding local prediction rules is presented. Those local prediction rules can attain a better general prediction accuracy. The method presented in this paper is based on the evolution of a rule system encoded following a Michigan approach. For testing this method, several time series domains have been used: a widely known artificial one, the Mackey-Glass time series, and two real world ones, the Venice Lagon and the sunspot time series

    An efficient supervised training algorithm for multilayer spiking neural networks

    Get PDF
    • …
    corecore