4 research outputs found

    A Risk management framework for the BYOD environment

    Get PDF
    Computer networks in organisations today have different layers of connections, which are either domain connections or external connections. The hybrid network contains the standard domain connections, cloud base connections, “bring your own device” (BYOD) connections, together with the devices and network connections of the Internet of Things (IoT). All these technologies will need to be incorporated in the Oman Vision 2040 strategy, which will involve changing several cities to smart cities. To implement this strategy artificial intelligence, cloud computing, BYOD and IoT will be adopted. This research will focus on the adoption of BYOD in the Oman context. It will have advantages for organisations, such as increasing productivity and reducing costs. However, these benefits come with security risks and privacy concerns, the users being the main contributors of these risks. The aim of this research is to develop a risk management and security framework for the BYOD environment to minimise these risks. The proposed framework is designed to detect and predict the risks by the use of MDM event logs and function logs. The chosen methodology is a combination of both qualitative and quantitative approaches, known as a mixed-methods approach. The approach adopted in this research will identify the latest threats and risks experienced in BYOD environments. This research also investigates the level of user-awareness of BYOD security methods. The proposed framework will enhance the current techniques for risk management by improving risk detection and prediction of threats, as well as, enabling BYOD risk management systems to generate notifications and recommendations of possible preventive/mitigation actions to deal with them

    Load-Aware Traffic Control in Software-Defined Enterprise Wireless Local Area Networks

    Get PDF
    With the growing popularity of Bring Your Own Device (BYOD), modern enterprise Wireless Local Area Networks (WLANs) deployments always consist of multiple Access Points (APs) to meet the fast-increasing demand for wireless access. In order to avoid network congestion which leads to issues such as suboptimal Quality of Service (QoS) and degraded user Quality of Experience (QoE), intelligent network traffic control is needed. Software Defined Networking (SDN) is an emerging architecture and intensively discussed as one of the most promising technologies to simplify network management and service development. In the SDN architecture, network management is directly programmable because it is decoupled from forwarding layer. Leveraging SDN to the existing enterprise WLANs framework, network services can be flexibly implemented to support intelligent network traffic control. This thesis studies the architecture of software-defined enterprise WLANs and how to improve network traffic control from a client-side and an AP-side perspective. By extending an existing software-defined enterprise WLANs framework, two adaptive algorithms are proposed to provide client-based mobility management and load balancing. Custom protocol messages and AP load metric are introduced to enable the proposed adaptive algorithms. Moreover, a software-defined enterprise WLAN system is designed and implemented on a testbed. A load-aware automatic channel switching algorithm and a QoS-aware bandwidth control algorithm are proposed to achieve AP-based network traffic control. Experimental results from the testbed show that the designed system and algorithms significantly improve the performance of traffic control in enterprise WLANs in terms of network throughput, packet loss rate, transmission delay and jitter

    DDoS Capability and Readiness - Evidence from Australian Organisations

    Get PDF
    A common perception of cyber defence is that it should protect systems and data from malicious attacks, ideally keeping attackers outside of secure perimeters and preventing entry. Much of the effort in traditional cyber security defence is focused on removing gaps in security design and preventing those with legitimate permissions from becoming a gateway or resource for those seeking illegitimate access. By contrast, Distributed Denial of Service (DDoS) attacks do not use application backdoors or software vulnerabilities to create their impact. They instead utilise legitimate entry points and knowledge of system processes for illegitimate purposes. DDoS seeks to overwhelm system and infrastructure resources so that legitimate requests are prevented from reaching their intended destination. For this thesis, a literature review was performed using sources from two perspectives. Reviews of both industry literature and academic literature were combined to build a balanced view of knowledge of this area. Industry and academic literature revealed that DDoS is outpacing internet growth, with vandalism, criminal and ideological motivations rising to prominence. From a defence perspective, the human factor remains a weak link in cyber security due to proneness for mistakes, oversights and the variance in approach and methods expressed by differing cultures. How cyber security is perceived, approached, and applied can have a critical effect on the overall outcome achieved, even when similar technologies are implemented. In addition, variance in the technical capabilities of those responsible for the implementation may create further gaps and vulnerabilities. While discussing technical challenges and theoretical concepts, existing literature failed to cover the experiences held by the victim organisations, or the thoughts and feelings of their personnel. This thesis addresses these identified gaps through exploratory research, which used a mix of descriptive and qualitative analysis to develop results and conclusions. The websites of 60 Australian organisations were analysed to uncover the level and quality of cyber security information they were willing to share and the methods and processes they used to engage with their audience. In addition, semi-structured interviews were conducted with 30 employees from around half of those websites analysed. These were analysed using NVivo12 qualitative analysis software. The difficulty experienced with attracting willing participants reflected the comfort that organisations showed with sharing cyber security information and experiences. However, themes found within the results show that, while DDoS is considered a valid threat, without encouragement to collaborate and standardise minimum security levels, firms may be missing out on valuable strategies to improve their cyber security postures. Further, this reluctance to share leads organisations to rely on their own internal skill and expertise, thus failing to realise the benefits of established frameworks and increased diversity in the workforce. Along with the size of the participant pool, other limitations included the diversity of participants and the impact of COVID-19 which may have influenced participants' thoughts and reflections. These limitations however, present opportunity for future studies using greater participant numbers or a narrower target focus. Either option would be beneficial to the recommendations of this study which were made from a practical, social, theoretical and policy perspective. On a practical and social level, organisational capabilities suffer due to the lack of information sharing and this extends to the community when similar restrictions prevent collaboration. Sharing of knowledge and experiences while protecting sensitive information is a worthy goal and this is something that can lead to improved defence. However, while improved understanding is one way to reduce the impact of cyber-attacks, the introduction of minimum cyber security standards for products, could reduce the ease at which devices can be used to facilitate attacks, but only if policy and effective governance ensures product compliance with legislation. One positive side to COVID-19's push to remote working, was an increase in digital literacy. As more roles were temporarily removed from their traditional physical workplace, many employees needed to rapidly accelerate their digital competency to continue their employment. To assist this transition, organisations acted to implement technology solutions that eased the ability for these roles to be undertaken remotely and as a consequence, they opened up these roles to a greater pool of available candidates. Many of these roles are no longer limited to the geographical location of potential employees or traditional hours of availability. Many of these roles could be accessed from almost anywhere, at any time, which had a positive effect on organisational capability and digital sustainability

    Network operator intent : a basis for user-friendly network configuration and analysis

    Get PDF
    Two important network management activities are configuration (making the network behave in a desirable way) and analysis (querying the network’s state). A challenge common to these activities is specifying operator intent. Seemingly simple configurations such as “no network user should exceed their allocated bandwidth” or questions like “how many network devices are in the library?” are difficult to formulate in practice, e.g. they may require multiple tools (like access control lists, firewalls, databases, or accounting software) and a detailed knowledge of the network. This requires a high degree of expertise and experience, and even then, mistakes are common. An understanding of the core concepts that network operators manipulate and analyse is needed so that more effective, efficient, and user-friendly tools and processes can be created. To address this, we create a taxonomy of languages for configuring networks, and use it to evaluate three such languages to learn how operators can express their intent. We identify factors such as language features, testing, state modeling, documentation, and tool support. Then, we interview network operators to understand what they want to express. We analyse the interviews and identify nine orthogonal dimensions which frequently appear in expressions of operator intent. We use these concepts, and our taxonomy, as the basis for a language for querying both business- and network-domain data. We evaluate our language and find that it reduces the number and complexity of queries needed to answer questions about networks. We also conduct a user study, and find that our language reduces novices’ cognitive load while increasing their accuracy and efficiency. With our language, users better understand how to approach questions, can more easily express themselves, and make fewer mistakes when interpreting data. Overall, we find that operator intent can, at one extreme, be expressed directly, as primitives like flow rules, packet counters, or CLI commands, and at another extreme as human-readable statements which are automatically translated and implemented. The former gives operators precise control, but the latter may be easier to use. We also find that there is more to expressing intent than syntax and semantics as usability, redundancy, state manipulation, and ecosystems all play a role. Our findings also show the importance of incorporating business-domain concepts in network management tools. By understanding operator intent we can reduce errors, improve both human-human and human-computer communication, create more usable tools, and make network operators more effective
    corecore