232 research outputs found

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF

    Analysis and Simulation of LTE Downlink and Uplink Transceiver

    Get PDF
    LTE (Long Term Evolution) is a next generation standard by 3rd Generation Partnership Project (3GPPP) consortium. In this paper, the physical layer (PHY) of LTE transceiver is analyzed in downlink and uplink transmissions. Simulations of the physical layer of LTE transceiver are obtained with the use of LTE System Toolbox by Mathworks. Simulation results are presented to show the performance of LTE transceivers in Physical Downlink Shared Channel (PDSCH) and Physical Uplink Shared Channel (PUSCH). Measurements of throughput and Bit Error Rate (BER) are obtained for different simulation configurations

    A framework design for the next-generation radio access system

    Full text link

    A Framework Design for the Next-Generation Radio Access System

    Get PDF
    Extensive use of the Internet and huge demands for multimedia services via portable devices require the development of packet-based radio access systems with high transmission efficiency. Advanced radio transmission technologies have recently been proposed to achieve this challenging task. However, few researches have been reported on the design of an integrated system that can efficiently exploit the advantages of these transmission technologies. This paper considers the design of a packet-based cellular system for next-generation radio access. We propose a novel system framework that can incorporate various advanced transmission technologies such as link adaptation, opportunistic packet scheduling, channel coding, and multiantenna techniques. For efficient use of these technologies together, we first investigate the interoperability between these technologies by proposing a so-called cause and effect analysis. Based on this investigation, we design a differentiated-segments-based orthogonal frequency-division multiplexing system, called DiffSeg, to accommodate heterogeneous operating conditions in a seamless manner. Simulation results show that the proposed DiffSeg system can provide a nearly optimum performance with flexible configuration in a wide range of wireless channel conditions

    Optimisation of relay placement in wireless butterfly networks

    Get PDF
    As a typical model of multicast network, wireless butterfly networks (WBNs) have been studied for modelling the scenario when two source nodes wish to convey data to two destination nodes via an intermediary node namely relay node. In the context of wireless communications, when receiving two data packets from the two source nodes, the relay node can employ either physical-layer network coding or analogue network coding on the combined packet prior to forwarding to the two destination nodes. Evaluating the energy efficiency of these combination approaches, energy-delay trade-off (EDT) is worth to be investigated and the relay placement should be taken into account in the practical network design. This chapter will first investigate the EDT of network coding in the WBNs. Based on the derived EDT, algorithms that optimize the relay position will be developed to either minimize the transmission delay or minimize the energy consumption subject to constraints on power allocation and location of nodes. Furthermore, considering an extended model of the WBN, the relay placement will be studied for a general wireless multicast network with multiple source, relay and destination nodes

    Efficient Multicast in Next Generation Mobile Networks

    Get PDF
    corecore