77,482 research outputs found

    Towards a Reliable Comparison and Evaluation of Network Intrusion Detection Systems Based on Machine Learning Approaches

    Get PDF
    Presently, we are living in a hyper-connected world where millions of heterogeneous devices are continuously sharing information in different application contexts for wellness, improving communications, digital businesses, etc. However, the bigger the number of devices and connections are, the higher the risk of security threats in this scenario. To counteract against malicious behaviours and preserve essential security services, Network Intrusion Detection Systems (NIDSs) are the most widely used defence line in communications networks. Nevertheless, there is no standard methodology to evaluate and fairly compare NIDSs. Most of the proposals elude mentioning crucial steps regarding NIDSs validation that make their comparison hard or even impossible. This work firstly includes a comprehensive study of recent NIDSs based on machine learning approaches, concluding that almost all of them do not accomplish with what authors of this paper consider mandatory steps for a reliable comparison and evaluation of NIDSs. Secondly, a structured methodology is proposed and assessed on the UGR'16 dataset to test its suitability for addressing network attack detection problems. The guideline and steps recommended will definitively help the research community to fairly assess NIDSs, although the definitive framework is not a trivial task and, therefore, some extra effort should still be made to improve its understandability and usability further

    Perfluorocarbon Enhanced Glasgow Oxygen Level Dependent (GOLD) magnetic resonance metabolic imaging identifies the penumbra following acute ischemic stroke

    Get PDF
    The ability to identify metabolically active and potentially salvageable ischaemic penumbra is crucial for improving treatment decisions in acute stroke patients. Our solution involves two complementary novel MRI techniques (Glasgow Oxygen Level Dependant (GOLD) Metabolic Imaging), which when combined with a perfluorocarbon (PFC) based oxygen carrier and hyperoxia can identify penumbra due to dynamic changes related to continued metabolism within this tissue compartment. Our aims were (i) to investigate whether PFC offers similar enhancement of the second technique (Lactate Change) as previously demonstrated for the T2*OC technique (ii) to demonstrate both GOLD metabolic imaging techniques working concurrently to identify penumbra, following administration of Oxycyte® (O-PFC) with hyperoxia. Methods: An established rat stroke model was utilised. Part-1: Following either saline or PFC, magnetic resonance spectroscopy was applied to investigate the effect of hyperoxia on lactate change in presumed penumbra. Part-2; rats received O-PFC prior to T2*OC (technique 1) and MR spectroscopic imaging, which was used to identify regions of tissue lactate change (technique 2) in response to hyperoxia. In order to validate the techniques, imaging was followed by [14C]2-deoxyglucose autoradiography to correlate tissue metabolic status to areas identified as penumbra. Results: Part-1: PFC+hyperoxia resulted in an enhanced reduction of lactate in the penumbra when compared to saline+hyperoxia. Part-2: Regions of brain tissue identified as potential penumbra by both GOLD metabolic imaging techniques utilising O-PFC, demonstrated maintained glucose metabolism as compared to adjacent core tissue. Conclusion: For the first time in vivo, enhancement of both GOLD metabolic imaging techniques has been demonstrated following intravenous O-PFC+hyperoxia to identify ischaemic penumbra. We have also presented preliminary evidence of the potential therapeutic benefit offered by O-PFC. These unique theranostic applications would enable treatment based on metabolic status of the brain tissue, independent of time from stroke onset, leading to increased uptake and safer use of currently available treatment options

    Signatures of Exotic Hadrons

    Full text link
    Hadron spectroscopy represented in the past a major tool for understanding the fundamental symmetries of strong forces. More recently, the interest on this topic has been revitalized by the discovery of new quarkonium-like resonances, that do not fit in the standard picture and whose understanding could improve our mastery of quantum chromodynamics. I review here the experimental signatures of these exotic hadrons, at present and future e+e- and hadron collider experiments.Comment: 25 pages, 11 figures, submitted to International Journal of Modern Physics

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network

    Improvements In computed tomography perfusion output using complex singular value decomposition and the maximum slope algorithm

    Full text link
    OBJECTIVE: Determine if complex singular value decomposition (cSVD) used as preprocessing in the maximum slope algorithm reduces image noise of resultant physiologic parametric images. Noise will be decreased in the parametric maps of cerebral blood flow (CBF), cerebral blood volume (CBV) as compared to the same algorithm and data set with no cSVD applied. MATERIALS AND METHODS: A set of 10 patients (n=15) underwent a total combined 15 CT perfusion studies upon presenting with stroke symptoms. It was determined these patients suffered from occlusions resulting in a prolonged arrival time of blood to the brain. DICOM data files of these patients scans were selected based on this increased arrival delay. We compared the output of estimation calculations for cerebral blood flow (CBF), and cerebral blood volume (CBV), using preprocessing cSVD against the same scan data with no preprocessing cSVD. Image noise was assessed through the calculation of the standard deviation within specific regions of interest copied to specific areas of grey and white matter as well as CSF space. A decrease in the standard deviation values will indicate improvement in the noise level of the resultant images.. Results for the mean value within the regions of interest are expected to be similar between the groups calculated using cSVD and those calculated under the standard method. This will indicate the presence of minimal bias. RESULTS: Between groups of the standard processing method and the cSVD method standard deviation (SD) reductions were seen in both CBF and CBV values across all three ROIs. In grey matter measures of CBV, SD was reduced an average of 0.0034 mL/100g while measures of CBF saw SD reduced by an average of 0.073 mL/100g/min. In samples of white matter, standard deviations of CBV values were reduced on average by 0.0041mL/100g while CBF SD's were reduced by 0.073 mL/100g/min. CSF ROIs in CBV calculations saw SD reductions averaging 0.0047 mL/100g and reductions of 0.074 mL/100g/min in measures of CBF. Bias within CBV calculations was at most minimal as determined by no significant changes in mean calculated values. Calculations of CBF saw large downward bias in the mean values. CONCLUSIONS: The application of the cSVD method to preprocessing of CT perfusion imaging studies produces an effective method of noise reduction. In calculations of CBV, cSVD noise reduction results in overall improvement. In calculations of CBF, cSVD, while effective in noise reduction, caused mean values to be statistically lower than the standard method. It should be noted that there is currently no evaluation of which values can be considered more accurate physiologically. Simulations of the effect of noise on CBF showed a positive correlation suggesting that the CBF algorithm itself is sensitive to the level of noise

    Focused Attention vs. Open Monitoring: An Event-Related Potential Study of Emotion Regulation by Two Distinct Forms of Mindfulness Meditation

    Get PDF
    This study investigated the effects of two novel forms of 8-week mindfulness meditation training, focused attention (FA) and open monitoring (OM), relative to an established training, mindfulness-based cognitive therapy (MBCT), on early emotional reactivity to negative emotional images as assessed by electroencephalography (EEG). Data on the late-positive potential (LPP) were analyzed to address whether the three mindfulness interventions attenuated the LPP from pre- to post-intervention, and if significant differences existed between groups in LPP at post-intervention. Rather than an attenuation, results indicated an average increase in LPP amplitude from pre- to post-intervention. No significant differences were found in the LPP between the training conditions at post-intervention. These results provide preliminary evidence that mindfulness training in novice practitioners may heighten initial emotional reactivity. Further, well-designed research is needed to examine a wider range of neural responses to better understand emotion regulation process effects of different forms of mindfulness training
    corecore