6,349 research outputs found

    A NEW INTEGRATED GREY MCDM MODEL: CASE OF WAREHOUSE LOCATION SELECTION

    Get PDF
    Warehouses link suppliers and customers throughout the entire supply chain. The location of the warehouse has a significant impact on the logistics process. Even though all other warehouse activities are successful, if the product dispatched from the warehouse fails to meet the customer needs in time, the company may face with the risk of losing customers. This affects the performance of the whole supply chain therefore the choice of warehouse location is an important decision problem. This problem is a multi-criteria decision-making (MCDM) problem since it involves many criteria and alternatives in the selection process. This study proposes an integrated grey MCDM model including grey preference selection index (GPSI) and grey proximity indexed value (GPIV) to determine the most appropriate warehouse location for a supermarket. This study aims to make three contributions to the literature. PSI and PIV methods combined with grey theory will be introduced for the first time in the literature. In addition, GPSI and GPIV methods will be combined and used to select the best warehouse location. In this study, the performances of five warehouse location alternatives were assessed with twelve criteria. Location 4 is found as the best alternative in GPIV. The GPIV results were compared with other grey MCDM methods, and it was found that GPIV method is reliable. It has been determined from the sensitivity analysis that the change in criteria weights causes a change in the ranking of the locations therefore GPIV method was found to be sensitive to the change in criteria weights

    Multi-Criteria Decision-Making Methods Application in Supply Chain Management: A Systematic Literature Review

    Get PDF
    Over the last decade, a large number of research papers, certified courses, professional development programs and scientific conferences have addressed supply chain management (SCM), thereby attesting to its significance and importance. SCM is a multi-criteria decision-making (MCDM) problem because throughout its process, different criteria related to each supply chain (SC) activity and their associated sub-criteria must be considered. Often, these criteria are conflicting in nature. For their part, MCDM methods have also attracted significant attention among researchers and practitioners in the field of SCM. The aim of this chapter is to conduct a systematic literature review of published articles in the application of MCDM methods in SCM decisions at the strategic, tactical and operational levels. This chapter considers major SC activities such as supplier selection, manufacturing, warehousing and logistics. A total of 140 published articles (from 2005 to 2017) were studied and categorized, and gaps in the literature were identified. This chapter is useful for academic researchers, decision makers and experts to whom it will provide a better understanding of the application of MCDM methods in SCM, at various levels of the decision-making process, and establish guidelines for selecting an appropriate MCDM method for managing SC activities

    To Greener Pastures: An Action Research Study on the Environmental Sustainability of Humanitarian Supply Chains

    Get PDF
    Purpose: While humanitarian supply chains (HSCs) inherently contribute to social sustainability by alleviating the suffering of afflicted communities, their unintended adverse environmental impact has been overlooked hitherto. This paper draws upon contingency theory to synthesize green practices for HSCs, identify the contingency factors that impact on greening HSCs and explore how focal humanitarian organizations (HOs) can cope with such contingency factors. Design/methodology/approach: Deploying an action research methodology, two-and-a-half cycles of collaboration between researchers and a United Nations agency were completed. The first half-cycle developed a deductive greening framework, synthesizing extant green practices from the literature. In the second and third cycles, green practices were adopted/customized/developed reflecting organizational and contextual contingency factors. Action steps were implemented in the HSC for prophylactics, involving an operational mix of disaster relief and development programs. Findings: First, the study presents a greening framework that synthesizes extant green practices in a suitable form for HOs. Second, it identifies the contingency factors associated with greening HSCs regarding funding environment, stakeholders, field of activity and organizational management. Third, it outlines the mechanisms for coping with the contingency factors identified, inter alia, improving the visibility of headquarters over field operations, promoting collaboration and resource sharing with other HOs as well as among different implementing partners in each country, and working with suppliers for greener packaging. The study advances a set of actionable propositions for greening HSCs. Practical implications: Using an action research methodology, the study makes strong practical contributions. Humanitarian practitioners can adopt the greening framework and the lessons learnt from the implementation cycles presented in this study. Originality/value: This is one of the first empirical studies to integrate environmental sustainability and HSCs using an action research methodology

    Identification of Environmental Criteria for Selecting a Logistics Service Provider: A Step Forward towards Green Supply Chain Management

    Get PDF
    Green environmental performance increases the competitiveness of the supply chain. However, the greening of the supply chain depends on the manufacturer who drives the green initiative, as well as on all the members of the supply chain who take part in the process. The manufacturer’s attention has been largely focused on the environmental performance of the supplier and retailer, whereas logistics service providers have been somehow neglected. It is, in fact, the case is that logistics service providers have begun to play a critical role in supply chain management and could therefore significantly improve environmental sustainability. They have already undertaken a green initiative that unfortunately has rarely, if at all, been required by the manufacturer. The lack of requirements for logistics providers hinders the progress of a green initiative. To take a step forward towards green supply chain management, this chapter aims to introduce all the necessary criteria for the selection of a logistics service provider (LP), with an emphasis on environmental criteria. The environmental selection criteria, with all related subcriteria, were achieved on the basis of a systematic literature review. It has been found that buyers of logistics services still strive to minimize costs, expect quality logistics services, a well-positioned LP, all the while overlooking environmental issues. The most frequently applied environmental selection criteria are value-added reverse logistics services, followed by environmental expenditures, pollutants released, energy consumption, clean materials and energy use. The findings presented here are useful particularly for researchers, as issues regarding sustainable LP selection and its limitations are highlighted, related to selection criteria identification. These findings may be of less use to managers. However, future phases of this study, richer for the evaluation of logistics experts, will be much more applicable to buyers and providers of logistics services

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM

    Sustainable development in contract logistics through green warehousing and distribution. Practical case: Maersk warehouse

    Get PDF
    The thesis is dedicated to the staple part of contract logistics – warehousing and distribution. The nature of this study is to show the sustainable development of (green) warehousing, the crucial changes and achievements in the sector and how these improvements impact the environment and society. The author appeals to the research and analytical methods where he investigates the sources and related documents to analyse the global situation in contract logistics and describe the current situation of green warehousing. The practical method helped to study the Maersk warehouse and to show if it indeed responds to the requirements of sustainable durability as well as highlights the transformations conducting the company towards decarbonisation. The first part dedicated to the general research of warehousing and distribution. The author investigated the main features of warehouse location and its crucial importance, studied different types of layouts, showed the modernisation and application of WMS facilitating the operation’s running, examined the efficiency of equipment usage, light and air conditioning systems and analysed the social impact of warehousing for sustainability. The second chapter observes the practical case of Maersk warehouse as the first logistic centre for the company in Iberia area. The author not only investigated the main features of warehouse, but also showed how the company is implementing the sustainable tools to reduce the environmental impact as well as gave at the glace the future of warehousing via innovation and technology usage

    Sustainable Warehouse Location Selection in Humanitarian Supply Chain: Multi-Criteria Decision-Making Approach

    Get PDF
    The frequency of catastrophic natural disasters is rising, and much emphasis is being given to the Humanitarian Supply chain (HSC). The main goal of relief efforts is to get enough emergency supplies to the area hit by the disaster as quickly as possible. The decision of where to locate warehouses that will store relief supplies presents a significant obstacle for humanitarian relief organizations as they work to enhance their capacity for providing aid and their rescue plan. A non-optimal location could make the search and rescue efforts harder. More importantly, it has been seen that when these kinds of geographical sites are evaluated, social and environmental issues are not considered. This research paper aims to make humanitarian networks more accountable by determining the ideal warehouse site and considering both traditional and sustainable factors. A framework for selecting warehouses to keep relief goods was devised using the Multi-Criteria Decision Making (MCDM) approach. Best-Worst and TOPSIS (“Technique for Order Performance by Similarity to the Ideal Solution”) methods were used to rank the potential locations based on Cost, Logistics, Environmental, and Social Criteria. A research study has been done in the State of West Bengal (District Arambagh)

    A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain

    Full text link
    [EN] The challenges of global economies foster supply chains to have to increase their processes of collaboration and dependence between their nodes, generating an increase in the level of vulnerability to possible impacts and interruptions in their operations that may affect their sustainability. This has developed an emerging area of interest in supply chain management, considering resilience management as a strategic capability of companies, and causing an increase in this area of research. Additionally, supply chains should deal with the three dimensions of sustainability (economic, environmental, and social dimensions) by incorporating the three types of objectives in their strategy. Thus, there is a need to integrate both resilience and sustainability in supply chain management to increase competitiveness. In this paper, a systematic literature review is undertaken to analyze resilience management and its connection to increase supply chain sustainability. In the review, 232 articles published from 2000 to February 2020 in peer-reviewed journals in the Scopus and ScienceDirect databases are analyzed, classified, and synthesized. With the results, this paper develops a conceptual framework that integrates the fundamental elements for analyzing, measuring, and managing resilience to increase sustainability in the supply chain. Finally, conclusions, limitations, and future research lines are exposed.This study was supported by the Valencian Government in Spain (Project AEST/2019/019).Zavala-Alcívar, A.; Verdecho Sáez, MJ.; Alfaro Saiz, JJ. (2020). A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain. Sustainability. 12(16):1-38. https://doi.org/10.3390/su12166300S1381216Roberta Pereira, C., Christopher, M., & Lago Da Silva, A. (2014). Achieving supply chain resilience: the role of procurement. Supply Chain Management: An International Journal, 19(5/6), 626-642. doi:10.1108/scm-09-2013-0346Pettit, T. J., Fiksel, J., & Croxton, K. L. (2010). ENSURING SUPPLY CHAIN RESILIENCE: DEVELOPMENT OF A CONCEPTUAL FRAMEWORK. Journal of Business Logistics, 31(1), 1-21. doi:10.1002/j.2158-1592.2010.tb00125.xPettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring Supply Chain Resilience: Development and Implementation of an Assessment Tool. Journal of Business Logistics, 34(1), 46-76. doi:10.1111/jbl.12009Ponis, S. T., & Koronis, E. (2012). Supply Chain Resilience: Definition Of Concept And Its Formative Elements. Journal of Applied Business Research (JABR), 28(5), 921. doi:10.19030/jabr.v28i5.7234Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699-1710. doi:10.1016/j.jclepro.2008.04.020Qorri, A., Mujkić, Z., & Kraslawski, A. (2018). A conceptual framework for measuring sustainability performance of supply chains. Journal of Cleaner Production, 189, 570-584. doi:10.1016/j.jclepro.2018.04.073Verdecho, M.-J., Alarcón-Valero, F., Pérez-Perales, D., Alfaro-Saiz, J.-J., & Rodríguez-Rodríguez, R. (2020). A methodology to select suppliers to increase sustainability within supply chains. Central European Journal of Operations Research, 29(4), 1231-1251. doi:10.1007/s10100-019-00668-3Edgeman, R., & Wu, Z. (2016). Supply chain criticality in sustainable and resilient enterprises. Journal of Modelling in Management, 11(4), 869-888. doi:10.1108/jm2-10-2014-0078Marchese, D., Reynolds, E., Bates, M. E., Morgan, H., Clark, S. S., & Linkov, I. (2018). Resilience and sustainability: Similarities and differences in environmental management applications. Science of The Total Environment, 613-614, 1275-1283. doi:10.1016/j.scitotenv.2017.09.086Ahern, J. (2012). Urban landscape sustainability and resilience: the promise and challenges of integrating ecology with urban planning and design. Landscape Ecology, 28(6), 1203-1212. doi:10.1007/s10980-012-9799-zRamezankhani, M. J., Torabi, S. A., & Vahidi, F. (2018). Supply chain performance measurement and evaluation: A mixed sustainability and resilience approach. Computers & Industrial Engineering, 126, 531-548. doi:10.1016/j.cie.2018.09.054Shashi, Centobelli, P., Cerchione, R., & Ertz, M. (2019). Managing supply chain resilience to pursue business and environmental strategies. Business Strategy and the Environment, 29(3), 1215-1246. doi:10.1002/bse.2428Ivanov, D. (2017). Revealing interfaces of supply chain resilience and sustainability: a simulation study. International Journal of Production Research, 56(10), 3507-3523. doi:10.1080/00207543.2017.1343507Fahimnia, B., & Jabbarzadeh, A. (2016). Marrying supply chain sustainability and resilience: A match made in heaven. Transportation Research Part E: Logistics and Transportation Review, 91, 306-324. doi:10.1016/j.tre.2016.02.007Ruiz-Benitez, R., López, C., & Real, J. C. (2019). Achieving sustainability through the lean and resilient management of the supply chain. International Journal of Physical Distribution & Logistics Management, 49(2), 122-155. doi:10.1108/ijpdlm-10-2017-0320Pavlov, A., Ivanov, D., Pavlov, D., & Slinko, A. (2019). Optimization of network redundancy and contingency planning in sustainable and resilient supply chain resource management under conditions of structural dynamics. Annals of Operations Research. doi:10.1007/s10479-019-03182-6Khot, S. B., & Thiagarajan, S. (2019). Resilience and sustainability of supply chain management in the Indian automobile industry. International Journal of Data and Network Science, 339-348. doi:10.5267/j.ijdns.2019.4.002Roostaie, S., Nawari, N., & Kibert, C. J. (2019). Sustainability and resilience: A review of definitions, relationships, and their integration into a combined building assessment framework. Building and Environment, 154, 132-144. doi:10.1016/j.buildenv.2019.02.042Davoudabadi, R., Mousavi, S. M., & Sharifi, E. (2020). An integrated weighting and ranking model based on entropy, DEA and PCA considering two aggregation approaches for resilient supplier selection problem. Journal of Computational Science, 40, 101074. doi:10.1016/j.jocs.2019.101074Carvalho, H., Duarte, S., & Cruz Machado, V. (2011). Lean, agile, resilient and green: divergencies and synergies. International Journal of Lean Six Sigma, 2(2), 151-179. doi:10.1108/20401461111135037Wang, Z., & Zhang, J. (2019). Agent-based evaluation of humanitarian relief goods supply capability. International Journal of Disaster Risk Reduction, 36, 101105. doi:10.1016/j.ijdrr.2019.101105Alikhani, R., Torabi, S. A., & Altay, N. (2019). Strategic supplier selection under sustainability and risk criteria. International Journal of Production Economics, 208, 69-82. doi:10.1016/j.ijpe.2018.11.018Zahiri, B., Zhuang, J., & Mohammadi, M. (2017). Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study. Transportation Research Part E: Logistics and Transportation Review, 103, 109-142. doi:10.1016/j.tre.2017.04.009Aboah, J., Wilson, M. M. J., Rich, K. M., & Lyne, M. C. (2019). Operationalising resilience in tropical agricultural value chains. Supply Chain Management: An International Journal, 24(2), 271-300. doi:10.1108/scm-05-2018-0204Statsenko, L., & Corral de Zubielqui, G. (2020). Customer collaboration, service firms’ diversification and innovation performance. Industrial Marketing Management, 85, 180-196. doi:10.1016/j.indmarman.2019.09.013Duong, L. N. K., & Chong, J. (2020). Supply chain collaboration in the presence of disruptions: a literature review. International Journal of Production Research, 58(11), 3488-3507. doi:10.1080/00207543.2020.1712491Bhamra, R., Dani, S., & Burnard, K. (2011). Resilience: the concept, a literature review and future directions. International Journal of Production Research, 49(18), 5375-5393. doi:10.1080/00207543.2011.563826Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk – Definition, measure and modeling. Omega, 52, 119-132. doi:10.1016/j.omega.2014.10.004Hohenstein, N.-O., Feisel, E., Hartmann, E., & Giunipero, L. (2015). Research on the phenomenon of supply chain resilience. International Journal of Physical Distribution & Logistics Management, 45(1/2), 90-117. doi:10.1108/ijpdlm-05-2013-0128Kamalahmadi, M., & Parast, M. M. (2016). A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. International Journal of Production Economics, 171, 116-133. doi:10.1016/j.ijpe.2015.10.023Ali, A., Mahfouz, A., & Arisha, A. (2017). Analysing supply chain resilience: integrating the constructs in a concept mapping framework via a systematic literature review. Supply Chain Management: An International Journal, 22(1), 16-39. doi:10.1108/scm-06-2016-0197Umar, M., Wilson, M., & Heyl, J. (2017). Food Network Resilience Against Natural Disasters: A Conceptual Framework. SAGE Open, 7(3), 215824401771757. doi:10.1177/2158244017717570Stone, J., & Rahimifard, S. (2018). Resilience in agri-food supply chains: a critical analysis of the literature and synthesis of a novel framework. Supply Chain Management: An International Journal, 23(3), 207-238. doi:10.1108/scm-06-2017-0201Colicchia, C., Creazza, A., Noè, C., & Strozzi, F. (2019). Information sharing in supply chains: a review of risks and opportunities using the systematic literature network analysis (SLNA). Supply Chain Management: An International Journal, 24(1), 5-21. doi:10.1108/scm-01-2018-0003Annarelli, A., & Nonino, F. (2016). Strategic and operational management of organizational resilience: Current state of research and future directions. Omega, 62, 1-18. doi:10.1016/j.omega.2015.08.004Behzadi, G., O’Sullivan, M. J., Olsen, T. L., & Zhang, A. (2018). Agribusiness supply chain risk management: A review of quantitative decision models. Omega, 79, 21-42. doi:10.1016/j.omega.2017.07.005Kochan, C. G., & Nowicki, D. R. (2018). Supply chain resilience: a systematic literature review and typological framework. International Journal of Physical Distribution & Logistics Management, 48(8), 842-865. doi:10.1108/ijpdlm-02-2017-0099Hosseini, S., Ivanov, D., & Dolgui, A. (2019). Review of quantitative methods for supply chain resilience analysis. Transportation Research Part E: Logistics and Transportation Review, 125, 285-307. doi:10.1016/j.tre.2019.03.001Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207-222. doi:10.1111/1467-8551.00375Rousseau, D. M., Manning, J., & Denyer, D. (2008). 11 Evidence in Management and Organizational Science: Assembling the Field’s Full Weight of Scientific Knowledge Through Syntheses. Academy of Management Annals, 2(1), 475-515. doi:10.5465/19416520802211651Zimmer, K., Fröhling, M., & Schultmann, F. (2015). Sustainable supplier management – a review of models supporting sustainable supplier selection, monitoring and development. International Journal of Production Research, 54(5), 1412-1442. doi:10.1080/00207543.2015.1079340Natarajarathinam, M., Capar, I., & Narayanan, A. (2009). Managing supply chains in times of crisis: a review of literature and insights. International Journal of Physical Distribution & Logistics Management, 39(7), 535-573. doi:10.1108/09600030910996251Tang, C., & Tomlin, B. (2008). The power of flexibility for mitigating supply chain risks. International Journal of Production Economics, 116(1), 12-27. doi:10.1016/j.ijpe.2008.07.008Kleindorfer, P. R., & Saad, G. H. (2009). Managing Disruption Risks in Supply Chains. Production and Operations Management, 14(1), 53-68. doi:10.1111/j.1937-5956.2005.tb00009.xChristopher, M., & Peck, H. (2004). Building the Resilient Supply Chain. The International Journal of Logistics Management, 15(2), 1-14. doi:10.1108/09574090410700275Wu, T., Huang, S., Blackhurst, J., Zhang, X., & Wang, S. (2013). Supply Chain Risk Management: An Agent-Based Simulation to Study the Impact of Retail Stockouts. IEEE Transactions on Engineering Management, 60(4), 676-686. doi:10.1109/tem.2012.2190986Fang, H., & Xiao, R. (2013). Resilient closed-loop supply chain network design based on patent protection. International Journal of Computer Applications in Technology, 48(1), 49. doi:10.1504/ijcat.2013.055566Gong, J., Mitchell, J. E., Krishnamurthy, A., & Wallace, W. A. (2014). An interdependent layered network model for a resilient supply chain. Omega, 46, 104-116. doi:10.1016/j.omega.2013.08.002Mari, S., Lee, Y., & Memon, M. (2014). Sustainable and Resilient Supply Chain Network Design under Disruption Risks. Sustainability, 6(10), 6666-6686. doi:10.3390/su6106666Bueno-Solano, A., & Cedillo-Campos, M. G. (2014). Dynamic impact on global supply chains performance of disruptions propagation produced by terrorist acts. Transportation Research Part E: Logistics and Transportation Review, 61, 1-12. doi:10.1016/j.tre.2013.09.005Costantino, F., Gravio, G. D., Shaban, A., & Tronci, M. (2014). Replenishment policy based on information sharing to mitigate the severity of supply chain disruption. International Journal of Logistics Systems and Management, 18(1), 3. doi:10.1504/ijlsm.2014.062119Kristianto, Y., Gunasekaran, A., Helo, P., & Hao, Y. (2014). A model of resilient supply chain network design: A two-stage programming with fuzzy shortest path. Expert Systems with Applications, 41(1), 39-49. doi:10.1016/j.eswa.2013.07.009Raj, R., Wang, J. W., Nayak, A., Tiwari, M. K., Han, B., Liu, C. L., & Zhang, W. J. (2015). Measuring the Resilience of Supply Chain Systems Using a Survival Model. IEEE Systems Journal, 9(2), 377-381. doi:10.1109/jsyst.2014.2339552LOH, H. S., & THAI, V. V. (2015). Cost Consequences of a Port-Related Supply Chain Disruption. The Asian Journal of Shipping and Logistics, 31(3), 319-340. doi:10.1016/j.ajsl.2015.09.001Torabi, S. A., Baghersad, M., & Mansouri, S. A. (2015). Resilient supplier selection and order allocation under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 79, 22-48. doi:10.1016/j.tre.2015.03.005Cardoso, S. R., Paula Barbosa-Póvoa, A., Relvas, S., & Novais, A. Q. (2015). Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega, 56, 53-73. doi:10.1016/j.omega.2015.03.008Salehi Sadghiani, N., Torabi, S. A., & Sahebjamnia, N. (2015). Retail supply chain network design under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 75, 95-114. doi:10.1016/j.tre.2014.12.015Dixit, V., Seshadrinath, N., & Tiwari, M. K. (2016). Performance measures based optimization of supply chain network resilience: A NSGA-II + Co-Kriging approach. Computers & Industrial Engineering, 93, 205-214. doi:10.1016/j.cie.2015.12.029Liu, F., Song, J.-S., & Tong, J. D. (2016). Building Supply Chain Resilience through Virtual Stockpile Pooling. Production and Operations Management, 25(10), 1745-1762. doi:10.1111/poms.12573Fahimnia, B., Jabbarzadeh, A., & Sarkis, J. (2018). Greening versus resilience: A supply chain design perspective. Transportation Research Part E: Logistics and Transportation Review, 119, 129-148. doi:10.1016/j.tre.2018.09.005Hasani, A., & Khosrojerdi, A. (2016). Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study. Transportation Research Part E: Logistics and Transportation Review, 87, 20-52. doi:10.1016/j.tre.2015.12.009Azhmyakov, V., Fernández-Gutiérrez, J. P., Gadi, S. K., & Pickl, S. (2016). A Novel Numerical Approach to the MCLP Based Resilent Supply Chain Optimization. IFAC-PapersOnLine, 49(31), 137-142. doi:10.1016/j.ifacol.2016.12.175Ivanov, D., Sokolov, B., Solovyeva, I., Dolgui, A., & Jie, F. (2016). Dynamic recovery policies for time-critical supply chains under conditions of ripple effect. International Journal of Production Research, 54(23), 7245-7258. doi:10.1080/00207543.2016.1161253Jabbarzadeh, A., Fahimnia, B., Sheu, J.-B., & Moghadam, H. S. (2016). Designing a supply chain resilient to major disruptions and supply/demand interruptions. Transportation Research Part B: Methodological, 94, 121-149. doi:10.1016/j.trb.2016.09.004Babich, V., Burnetas, A. N., & Ritchken, P. H. (2007). Competition and Diversification Effects in Supply Chains with Supplier Default Risk. Manufacturing & Service Operations Management, 9(2), 123-146. doi:10.1287/msom.1060.0122Bogataj, D., Aver, B., & Bogataj, M. (2016). Supply chain risk at simultaneous robust perturbations. International Journal of Production Economics, 181, 68-78. doi:10.1016/j.ijpe.2015.09.009Wang, X., Herty, M., & Zhao, L. (2015). Contingent rerouting for enhancing supply chain resilience from supplier behavior perspective. International Transactions in Operational Research, 23(4), 775-796. doi:10.1111/itor.12151Zeng, B., & Yen, B. P.-C. (2017). Rethinking the role of partnerships in global supply chains: A risk-based perspective. International Journal of Production Economics, 185, 52-62. doi:10.1016/j.ijpe.2016.12.004Lücker, F., & Seifert, R. W. (2017). Building up Resilience in a Pharmaceutical Supply Chain through Inventory, Dual Sourcing and Agility Capacity. Omega, 73, 114-124. doi:10.1016/j.omega.2017.01.001Fattahi, M., Govindan, K., & Keyvanshokooh, E. (2017). Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers. Transportation Research Part E: Logistics and Transportation Review, 101, 176-200. doi:10.1016/j.tre.2017.02.004Kırılmaz, O., & Erol, S. (2017). A proactive approach to supply chain risk management: Shifting orders among suppliers to mitigate the supply side risks. Journal of Purchasing and Supply Management, 23(1), 54-65. doi:10.1016/j.pursup.2016.04.002Li, H., Pedrielli, G., Lee, L. H., & Chew, E. P. (2016). Enhancement of supply chain resilience through inter-echelon information sharing. Flexible Services and Manufacturing Journal, 29(2), 260-285. doi:10.1007/s10696-016-9249-3Otto, C., Willner, S. N., Wenz, L., Frieler, K., & Levermann, A. (2017). Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate. Journal of Economic Dynamics and Control, 83, 232-269. doi:10.1016/j.jedc.2017.08.001Rezapour, S., Farahani, R. Z., & Pourakbar, M. (2017). Resilient supply chain network design under competition: A case study. European Journal of Operational Research, 259(3), 1017-1035. doi:10.1016/j.ejor.2016.11.041Ledwoch, A., Yasarcan, H., & Brintrup, A. (2018). The moderating impact of supply network topology on the effectiveness of risk management. International Journal of Production Economics, 197, 13-26. doi:10.1016/j.ijpe.2017.12.013Al-Othman, W. B. E., Lababidi, H. M. S., Alatiqi, I. M., & Al-Shayji, K. (2008). Supply chain optimization of petroleum organization under uncertainty in market demands and prices. European Journal of Operational Research, 189(3), 822-840. doi:10.1016/j.ejor.2006.06.081Ivanov, D., Dolgui, A., & Sokolov, B. (2017). Scheduling of recovery actions in the supply chain with resilience analysis considerations. International Journal of Production Research, 56(19), 6473-6490. doi:10.1080/00207543.2017.1401747Das, K. (2019). Integrating Lean, Green, and Resilience Criteria in a Sustainable Food Supply Chain Planning Model. International Journal of Mathematical, Engineering and Management Sciences, 4(2), 259-275. doi:10.33889/ijmems.2019.4.2-022Das, K. (2018). Integrating resilience in a supply chain planning model. International Journal of Quality & Reliability Management, 35(3), 570-595. doi:10.1108/ijqrm-08-2016-0136Arora, V., & Ventresca, M. (2018). Modeling topologically resilient supply chain networks. Applied Network Science, 3(1). doi:10.1007/s41109-018-0070-7Almeida, J. F. de F., Conceição, S. V., Pinto, L. R., de Camargo, R. S., & Júnior, G. de M. (2018). Flexibility evaluation of multiechelon supply chains. PLOS ONE, 13(3), e0194050. doi:10.1371/journal.pone.0194050Mancheri, N. A., Sprecher, B., Deetman, S., Young, S. B., Bleischwitz, R., Dong, L., … Tukker, A. (2018). Resilience in the tantalum supply chain. Resources, Conservation and Recycling, 129, 56-69. doi:10.1016/j.resconrec.2017.10.018Namdar, J., Li, X., Sawhney, R., & Pradhan, N. (2017). Supply chain resilience for single and multiple sourcing in the presence of disruption risks. International Journal of Production Research, 56(6), 2339-2360. doi:10.1080/00207543.2017.1370149Rozhkov, M., & Ivanov, D. (2018). CONTINGENCY PRODUCTION-INVENTORY CONTROL POLICY FOR CAPACITY DISRUPTIONS IN THE RETAIL SUPPLY CHAIN WITH PERISHABLE PRODUCTS. IFAC-PapersOnLine, 51(11), 1448-1452. doi:10.1016/j.ifacol.2018.08.311Sabouhi, F., Pishvaee, M. S., & Jabalameli, M. S. (2018). Resilient supply chain design under operational and disruption risks considering quantity discount: A case study of pharmaceutical supply chain. Computers & Industrial Engineering, 126, 657-672. doi:10.1016/j.cie.2018.10.001Zavitsas, K., Zis, T., & Bell, M. G. H. (2018). The impact of flexible environmental policy on maritime supply chain resilience. Transport Policy, 72, 116-128. doi:10.1016/j.tranpol.2018.09.020Mitra, K., Gudi, R. D., Patwardhan, S. C., & Sardar, G. (2009). Towards resilient supply chains: Uncertainty analysis using fuzzy mathematical programming. Chemical Engineering Research and Design, 87(7), 967-981. doi:10.1016/j.cherd.2008.12.025Lücker, F., Seifert, R. W., & Biçer, I. (2018). Roles of inventory and reserve capacity in mitigating supply chain disruption risk. International Journal of Production Research, 57(4), 1238-1249. doi:10.1080/00207543.2018.15041
    corecore