48 research outputs found

    Selection of robust features for the Cover Source Mismatch problem in 3D steganalysis

    Get PDF
    This paper introduces a novel method for extracting sets of feature from 3D objects characterising a robust stegan- alyzer. Specifically, the proposed steganalyzer should mitigate the Cover Source Mismatch (CSM) paradigm. A steganalyzer is considered as a classifier aiming to identify separately cover and stego objects. A steganalyzer behaves as a classifier by considering a set of features extracted from cover stego pairs of 3D objects as inputs during the training stage. However, during the testing stage, the steganalyzer would have to identify whether specific information was hidden in a set of 3D objects which can be different from those used during the training. Addressing the CSM paradigm corresponds to testing the generalization ability of the steganalyzer when introducing distortions in the cover objects before hiding information through steganography. Our method aims to select those 3D features that model best the changes introduced in objects by steganography or information hiding and moreover they are able to generalize for different objects, not present in the training set. The proposed robust steganalysis approach is tested when considering changes in 3D objects such as those produced by mesh simplification and additive noise. The results obtained from this study show that the steganalyzers trained with the selected set of robust features achieve better detection accuracy of the changes embedded in the objects, when compared to other sets of features

    Steganalytic Methods for 3D Objects

    Get PDF
    This PhD thesis provides new research results in the area of using 3D features for steganalysis. The research study presented in the thesis proposes new sets of 3D features, greatly extending the previously proposed features. The proposed steganlytic feature set includes features representing the vertex normal, curvature ratio, Gaussian curvature, the edge and vertex position of the 3D objects in the spherical coordinate system. Through a second contribution, this thesis presents a 3D wavelet multiresolution analysis-based steganalytic method. The proposed method extracts the 3D steganalytic features from meshes of different resolutions. The third contribution proposes a robustness and relevance-based feature selection method for solving the cover-source mismatch problem in 3D steganalysis. This method selects those 3D features that are robust to the variation of the cover source, while preserving the relevance of such features to the class label. All the proposed methods are applied for identifying stego-meshes produced by several steganographic algorithms

    Selection of Robust and Relevant Features for 3-D Steganalysis

    Get PDF
    While 3-D steganography and digital watermarking represent methods for embedding information into 3-D objects, 3-D steganalysis aims to find the hidden information. Previous research studies have shown that by estimating the parameters modelling the statistics of 3-D features and feeding them into a classifier we can identify whether a 3-D object carries secret information. For training the steganalyser such features are extracted from cover and stego pairs, representing the original 3-D objects and those carrying hidden information. However, in practical applications, the steganalyzer would have to distinguish stego-objects from cover-objects, which most likely have not been used during the training. This represents a significant challenge for existing steganalyzers, raising a challenge known as the Cover Source Mismatch (CSM) problem, which is due to the significant limitation of their generalization ability. This paper proposes a novel feature selection algorithm taking into account both feature robustness and relevance in order to mitigate the CSM problem in 3-D steganalysis. In the context of the proposed methodology, new shapes are generated by distorting those used in the training. Then a subset of features is selected from a larger given set, by assessing their effectiveness in separating cover objects from stego-objects among the generated sets of objects. Two different measures are used for selecting the appropriate features: Pearson Correlation Coefficient (PCC) and the Mutual Information Criterion (MIC)

    A Review of 2D &3D Image Steganography Techniques

    Get PDF
    This examination displays an outline of different three-dimensional (3D) picture steganography methods from overview perspective. This paper exhibit scientific categorization of 3D picture steganography systems and distinguish the ongoing advances in this field. Steganalysis and assaults on 3D picture steganography calculations have likewise been examined. 3D picture steganography strategies in all the three spaces: geometrical, topological and portrayal areas have been contemplated and thought about among each other on different parameters, for example, inserting limit, reversibility and reaction towards assaults. A few difficulties which restrain the advancement of 3D steganography calculations have been recognized. This investigation finishes up with some valuable discoveries at last

    Steganalysis of 3D objects using statistics of local feature sets

    Get PDF
    3D steganalysis aims to identify subtle invisible changes produced in graphical objects through digital watermarking or steganography. Sets of statistical representations of 3D features, extracted from both cover and stego 3D mesh objects, are used as inputs into machine learning classifiers in order to decide whether any information was hidden in the given graphical object. The features proposed in this paper include those representing the local object curvature, vertex normals, the local geometry representation in the spherical coordinate system. The effectiveness of these features is tested in various combinations with other features used for 3D steganalysis. The relevance of each feature for 3D steganalysis is assessed using the Pearson correlation coefficient. Six different 3D watermarking and steganographic methods are used for creating the stego-objects used in the evaluation study

    Hunting wild stego images, a domain adaptation problem in digital image forensics

    Get PDF
    Digital image forensics is a field encompassing camera identication, forgery detection and steganalysis. Statistical modeling and machine learning have been successfully applied in the academic community of this maturing field. Still, large gaps exist between academic results and applications used by practicing forensic analysts, especially when the target samples are drawn from a different population than the data in a reference database. This thesis contains four published papers aiming at narrowing this gap in three different fields: mobile stego app detection, digital image steganalysis and camera identification. It is the first work to explore a way of extending the academic methods to real world images created by apps. New ideas and methods are developed for target images with very rich flexibility in the embedding rates, embedding algorithms, exposure settings and camera sources. The experimental results proved that the proposed methods work very well, even for the devices which are not included in the reference database

    Steganalysis of meshes based on 3D wavelet multiresolution analysis

    Get PDF
    3D steganalysis aims to find the information hidden in 3D models and graphical objects. It is assumed that the information was hidden by 3D steganography or watermarking algorithms. A new set of 3D steganalysis features, derived by using multiresolution 3D wavelet analysis, is proposed in this research study. 3D wavelets relate a given mesh representation with its lower and higher graph resolutions by means of a set of Wavelet Coefficient Vectors (WCVs). The 3D steganalysis features are derived from transformations between a given mesh and its corresponding higher and lower resolutions. They correspond to geometric measures such as ratios and angles between various geometric measures. These features are shown to significantly increase the steganalysis accuracy when detecting watermarks which have been embedded by 3D wavelet-based watermarking algorithms. The proposed features, when used in combination with a previously proposed feature set, is shown to provide the best results in detecting the hidden information embedded by other information hiding algorithms

    3D Steganalysis Using the Extended Local Feature Set

    Get PDF

    Towards Improved Steganalysis: When Cover Selection is Used in Steganography

    Get PDF
    This paper proposes an improved steganalytic method when cover selection is used in steganography. We observed that the covers selected by existing cover selection methods normally have different characteristics from normal ones, and propose a steganalytic method to capture such differences. As a result, the detection accuracy of steganalysis is increased. In our method, we consider a number of images collected from one or more target (suspected but not known) users, and use an unsupervised learning algorithm such as kk -means to adapt the performance of a pre-trained classifier towards the cover selection operation of the target user(s). The adaptation is done via pseudo-labels from the suspected images themselves, thus allowing the re-trained classifier more aligned with the cover selection operation of the target user(s). We give experimental results to show that our method can indeed help increase the detection accuracy, especially when the percentage of stego images is between 0.3 and 0.7

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others
    corecore