238 research outputs found

    Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems [Chapter 7]

    Get PDF
    Solution of statistical inverse problems via the frequentist or Bayesian approaches described in earlier chapters can be a computationally intensive endeavor, particularly when faced with large-scale forward models characteristic of many engineering and science applications. High computational cost arises in several ways. First, thousands or millions of forward simulations may be required to evaluate estimators of interest or to characterize a posterior distribution. In the large-scale setting, performing so many forward simulations is often computationally intractable. Second, sampling may be complicated by the large dimensionality of the input space--as when the inputs are fields represented with spatial discretizations of high dimension--and by nonlinear forward dynamics that lead to multimodal, skewed, and/or strongly correlated posteriors. In this chapter, we present an overview of surrogate and reduced order modeling methods that address these computational challenges. For illustration, we consider a Bayesian formulation of the inverse problem. Though some of the methods we review exploit prior information, they largely focus on simplifying or accelerating evaluations of a stochastic model for the data, and thus are also applicable in a frequentist context.Sandia National Laboratories (Laboratory Directed Research and Development (LDRD) program)United States. Dept. of Energy (Contract DE-AC04-94AL85000)Singapore-MIT Alliance Computational Engineering ProgrammeUnited States. Dept. of Energy (Award Number DE-FG02-08ER25858 )United States. Dept. of Energy (Award Number DESC00025217

    Stochastic collocation on unstructured multivariate meshes

    Full text link
    Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically "unstructured" collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.Comment: 29 pages, 6 figure

    Compressive sensing adaptation for polynomial chaos expansions

    Full text link
    Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.Comment: Submitted to Journal of Computational Physic
    • …
    corecore