11,894 research outputs found

    Automatic annotation for weakly supervised learning of detectors

    Get PDF
    PhDObject detection in images and action detection in videos are among the most widely studied computer vision problems, with applications in consumer photography, surveillance, and automatic media tagging. Typically, these standard detectors are fully supervised, that is they require a large body of training data where the locations of the objects/actions in images/videos have been manually annotated. With the emergence of digital media, and the rise of high-speed internet, raw images and video are available for little to no cost. However, the manual annotation of object and action locations remains tedious, slow, and expensive. As a result there has been a great interest in training detectors with weak supervision where only the presence or absence of object/action in image/video is needed, not the location. This thesis presents approaches for weakly supervised learning of object/action detectors with a focus on automatically annotating object and action locations in images/videos using only binary weak labels indicating the presence or absence of object/action in images/videos. First, a framework for weakly supervised learning of object detectors in images is presented. In the proposed approach, a variation of multiple instance learning (MIL) technique for automatically annotating object locations in weakly labelled data is presented which, unlike existing approaches, uses inter-class and intra-class cue fusion to obtain the initial annotation. The initial annotation is then used to start an iterative process in which standard object detectors are used to refine the location annotation. Finally, to ensure that the iterative training of detectors do not drift from the object of interest, a scheme for detecting model drift is also presented. Furthermore, unlike most other methods, our weakly supervised approach is evaluated on data without manual pose (object orientation) annotation. Second, an analysis of the initial annotation of objects, using inter-class and intra-class cues, is carried out. From the analysis, a new method based on negative mining (NegMine) is presented for the initial annotation of both object and action data. The NegMine based approach is a much simpler formulation using only inter-class measure and requires no complex combinatorial optimisation but can still meet or outperform existing approaches including the previously pre3 sented inter-intra class cue fusion approach. Furthermore, NegMine can be fused with existing approaches to boost their performance. Finally, the thesis will take a step back and look at the use of generic object detectors as prior knowledge in weakly supervised learning of object detectors. These generic object detectors are typically based on sampling saliency maps that indicate if a pixel belongs to the background or foreground. A new approach to generating saliency maps is presented that, unlike existing approaches, looks beyond the current image of interest and into images similar to the current image. We show that our generic object proposal method can be used by itself to annotate the weakly labelled object data with surprisingly high accuracy

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Incremental concept learning with few training examples and hierarchical classification

    Get PDF
    Object recognition and localization are important to automatically interpret video and allow better querying on its content. We propose a method for object localization that learns incrementally and addresses four key aspects. Firstly, we show that for certain applications, recognition is feasible with only a few training samples. Secondly, we show that novel objects can be added incrementally without retraining existing objects, which is important for fast interaction. Thirdly, we show that an unbalanced number of positive training samples leads to biased classi er scores that can be corrected by modifying weights. Fourthly, we show that the detector performance can deteriorate due to hard-negative mining for similar or closely related classes (e.g., for Barbie and dress, because the doll is wearing a dress). This can be solved by our hierarchical classi cation. We introduce a new dataset, which we call TOSO, and use it to demonstrate the e ectiveness of the proposed method for the localization and recognition of multiple objects in images.This research was performed in the GOOSE project, which is jointly funded by the enabling technology program Adaptive Multi Sensor Networks (AMSN) and the MIST research program of the Dutch Ministry of Defense. This publication was supported by the research program Making Sense of Big Data (MSoBD).peer-reviewe

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods
    corecore