5,817 research outputs found

    The Jeffreys-Lindley Paradox and Discovery Criteria in High Energy Physics

    Full text link
    The Jeffreys-Lindley paradox displays how the use of a p-value (or number of standard deviations z) in a frequentist hypothesis test can lead to an inference that is radically different from that of a Bayesian hypothesis test in the form advocated by Harold Jeffreys in the 1930s and common today. The setting is the test of a well-specified null hypothesis (such as the Standard Model of elementary particle physics, possibly with "nuisance parameters") versus a composite alternative (such as the Standard Model plus a new force of nature of unknown strength). The p-value, as well as the ratio of the likelihood under the null hypothesis to the maximized likelihood under the alternative, can strongly disfavor the null hypothesis, while the Bayesian posterior probability for the null hypothesis can be arbitrarily large. The academic statistics literature contains many impassioned comments on this paradox, yet there is no consensus either on its relevance to scientific communication or on its correct resolution. The paradox is quite relevant to frontier research in high energy physics. This paper is an attempt to explain the situation to both physicists and statisticians, in the hope that further progress can be made.Comment: v4: Continued editing for clarity. Figure added. v5: Minor fixes to biblio. Same as published version except for minor copy-edits, Synthese (2014). v6: fix typos, and restore garbled sentence at beginning of Sec 4 to v

    Inverse Uncertainty Quantification using the Modular Bayesian Approach based on Gaussian Process, Part 2: Application to TRACE

    Full text link
    Inverse Uncertainty Quantification (UQ) is a process to quantify the uncertainties in random input parameters while achieving consistency between code simulations and physical observations. In this paper, we performed inverse UQ using an improved modular Bayesian approach based on Gaussian Process (GP) for TRACE physical model parameters using the BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark steady-state void fraction data. The model discrepancy is described with a GP emulator. Numerical tests have demonstrated that such treatment of model discrepancy can avoid over-fitting. Furthermore, we constructed a fast-running and accurate GP emulator to replace TRACE full model during Markov Chain Monte Carlo (MCMC) sampling. The computational cost was demonstrated to be reduced by several orders of magnitude. A sequential approach was also developed for efficient test source allocation (TSA) for inverse UQ and validation. This sequential TSA methodology first selects experimental tests for validation that has a full coverage of the test domain to avoid extrapolation of model discrepancy term when evaluated at input setting of tests for inverse UQ. Then it selects tests that tend to reside in the unfilled zones of the test domain for inverse UQ, so that one can extract the most information for posterior probability distributions of calibration parameters using only a relatively small number of tests. This research addresses the "lack of input uncertainty information" issue for TRACE physical input parameters, which was usually ignored or described using expert opinion or user self-assessment in previous work. The resulting posterior probability distributions of TRACE parameters can be used in future uncertainty, sensitivity and validation studies of TRACE code for nuclear reactor system design and safety analysis
    • …
    corecore