7,427 research outputs found

    Identification of biomarkers for genotyping Aspergilli using non-linear methods for clustering and classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the present investigation, we have used an exhaustive metabolite profiling approach to search for biomarkers in recombinant <it>Aspergillus nidulans </it>(mutants that produce the 6- methyl salicylic acid polyketide molecule) for application in metabolic engineering.</p> <p>Results</p> <p>More than 450 metabolites were detected and subsequently used in the analysis. Our approach consists of two analytical steps of the metabolic profiling data, an initial non-linear unsupervised analysis with Self-Organizing Maps (SOM) to identify similarities and differences among the metabolic profiles of the studied strains, followed by a second, supervised analysis for training a classifier based on the selected biomarkers. Our analysis identified seven putative biomarkers that were able to cluster the samples according to their genotype. A Support Vector Machine was subsequently employed to construct a predictive model based on the seven biomarkers, capable of distinguishing correctly 14 out of the 16 samples of the different <it>A. nidulans </it>strains.</p> <p>Conclusion</p> <p>Our study demonstrates that it is possible to use metabolite profiling for the classification of filamentous fungi as well as for the identification of metabolic engineering targets and draws the attention towards the development of a common database for storage of metabolomics data.</p

    Incorporating standardised drift-tube ion mobility to enhance non-targeted assessment of the wine metabolome (LC×IM-MS)

    Get PDF
    Liquid chromatography with drift-tube ion mobility spectrometry-mass spectrometry (LCxIM-MS) is emerging as a powerful addition to existing LC-MS workflows for addressing a diverse range of metabolomics-related questions [1,2]. Importantly, excellent precision under repeatability and reproducibility conditions of drift-tube IM separations [3] supports the development of non-targeted approaches for complex metabolome assessment such as wine characterisation [4]. In this work, fundamentals of this new analytical metabolomics approach are introduced and application to the analysis of 90 authentic red and white wine samples originating from Macedonia is presented. Following measurements, intersample alignment of metabolites using non-targeted extraction and three-dimensional alignment of molecular features (retention time, collision cross section, and high-resolution mass spectra) provides confidence for metabolite identity confirmation. Applying a fingerprinting metabolomics workflow allows statistical assessment of the influence of geographic region, variety, and age. This approach is a state-of-the-art tool to assess wine chemodiversity and is particularly beneficial for the discovery of wine biomarkers and establishing product authenticity based on development of fingerprint libraries

    MEATabolomics: Muscle and Meat Metabolomics in Domestic Animals

    Get PDF
    In the past decades, metabolomics has been used to comprehensively understand a variety of food materials for improvement and assessment of food quality. Farm animal skeletal muscles and meat are one of the major targets of metabolomics for the characterization of meat and the exploration of biomarkers in the production system. For identification of potential biomarkers to control meat quality, studies of animal muscles and meat with metabolomics (MEATabolomics) has been conducted in combination with analyses of meat quality traits, focusing on specific factors associated with animal genetic background and sensory scores, or conditions in feeding system and treatments of meat in the processes such as postmortem storage, processing, and hygiene control. Currently, most of MEATabolomics approaches combine separation techniques (gas or liquid chromatography, and capillary electrophoresis)–mass spectrometry (MS) or nuclear magnetic resonance (NMR) approaches with the downstream multivariate analyses, depending on the polarity and/or hydrophobicity of the targeted metabolites. Studies employing these approaches provide useful information to monitor meat quality traits efficiently and to understand the genetic background and production system of animals behind the meat quality. MEATabolomics is expected to improve the knowledge and methodologies in animal breeding and feeding, meat storage and processing, and prediction of meat quality

    Development and Application of Chemometric Methods for Modelling Metabolic Spectral Profiles

    No full text
    The interpretation of metabolic information is crucial to understanding the functioning of a biological system. Latent information about the metabolic state of a sample can be acquired using analytical chemistry methods, which generate spectroscopic profiles. Thus, nuclear magnetic resonance spectroscopy and mass spectrometry techniques can be employed to generate vast amounts of highly complex data on the metabolic content of biofluids and tissue, and this thesis discusses ways to process, analyse and interpret these data successfully. The evaluation of J -resolved spectroscopy in magnetic resonance profiling and the statistical techniques required to extract maximum information from the projections of these spectra are studied. In particular, data processing is evaluated, and correlation and regression methods are investigated with respect to enhanced model interpretation and biomarker identification. Additionally, it is shown that non-linearities in metabonomic data can be effectively modelled with kernel-based orthogonal partial least squares, for which an automated optimisation of the kernel parameter with nested cross-validation is implemented. The interpretation of orthogonal variation and predictive ability enabled by this approach are demonstrated in regression and classification models for applications in toxicology and parasitology. Finally, the vast amount of data generated with mass spectrometry imaging is investigated in terms of data processing, and the benefits of applying multivariate techniques to these data are illustrated, especially in terms of interpretation and visualisation using colour-coding of images. The advantages of methods such as principal component analysis, self-organising maps and manifold learning over univariate analysis are highlighted. This body of work therefore demonstrates new means of increasing the amount of biochemical information that can be obtained from a given set of samples in biological applications using spectral profiling. Various analytical and statistical methods are investigated and illustrated with applications drawn from diverse biomedical areas

    MEATabolomics: Muscle and Meat Metabolomics in Domestic Animals

    Get PDF
    In the past decades, metabolomics has been used to comprehensively understand a variety of food materials for improvement and assessment of food quality. Farm animal skeletal muscles and meat are one of the major targets of metabolomics for the characterization of meat and the exploration of biomarkers in the production system. For identification of potential biomarkers to control meat quality, studies of animal muscles and meat with metabolomics (MEATabolomics) has been conducted in combination with analyses of meat quality traits, focusing on specific factors associated with animal genetic background and sensory scores, or conditions in feeding system and treatments of meat in the processes such as postmortem storage, processing, and hygiene control. Currently, most of MEATabolomics approaches combine separation techniques (gas or liquid chromatography, and capillary electrophoresis)–mass spectrometry (MS) or nuclear magnetic resonance (NMR) approaches with the downstream multivariate analyses, depending on the polarity and/or hydrophobicity of the targeted metabolites. Studies employing these approaches provide useful information to monitor meat quality traits efficiently and to understand the genetic background and production system of animals behind the meat quality. MEATabolomics is expected to improve the knowledge and methodologies in animal breeding and feeding, meat storage and processing, and prediction of meat quality
    • …
    corecore