13,648 research outputs found

    Predicting the outcome of renal transplantation

    Get PDF
    ObjectiveRenal transplantation has dramatically improved the survival rate of hemodialysis patients. However, with a growing proportion of marginal organs and improved immunosuppression, it is necessary to verify that the established allocation system, mostly based on human leukocyte antigen matching, still meets today's needs. The authors turn to machine-learning techniques to predict, from donor-recipient data, the estimated glomerular filtration rate (eGFR) of the recipient 1 year after transplantation.DesignThe patient's eGFR was predicted using donor-recipient characteristics available at the time of transplantation. Donors' data were obtained from Eurotransplant's database, while recipients' details were retrieved from Charite Campus Virchow-Klinikum's database. A total of 707 renal transplantations from cadaveric donors were included.MeasurementsTwo separate datasets were created, taking features with <10% missing values for one and <50% missing values for the other. Four established regressors were run on both datasets, with and without feature selection.ResultsThe authors obtained a Pearson correlation coefficient between predicted and real eGFR (COR) of 0.48. The best model for the dataset was a Gaussian support vector machine with recursive feature elimination on the more inclusive dataset. All results are available at http://transplant.molgen.mpg.de/.LimitationsFor now, missing values in the data must be predicted and filled in. The performance is not as high as hoped, but the dataset seems to be the main cause.ConclusionsPredicting the outcome is possible with the dataset at hand (COR=0.48). Valuable features include age and creatinine levels of the donor, as well as sex and weight of the recipient

    Deep Learning Applications for Biomedical Data and Natural Language Processing

    Get PDF
    The human brain can be seen as an ensemble of interconnected neurons, more or less specialized to solve different cognitive and motor tasks. In computer science, the term deep learning is often applied to signify sets of interconnected nodes, where deep means that they have several computational layers. Development of deep learning is essentially a quest to mimic how the human brain, at least partially, operates.In this thesis, I will use machine learning techniques to tackle two different domain of problems. The first is a problem in natural language processing. We improved classification of relations within images, using text associated with the pictures. The second domain is regarding heart transplant. We created models for pre- and post-transplant survival and simulated a whole transplantation queue, to be able to asses the impact of different allocation policies. We used deep learning models to solve these problems.As introduction to these problems, I will present the basic concepts of machine learning, how to represent data, how to evaluate prediction results, and how to create different models to predict values from data. Following that, I will also introduce the field of heart transplant and some information about simulation

    New Tool for Signal Patients at Risk

    Get PDF
    Introduction: Pancreas transplantation is currently the only treatment that can re-establish normal endocrine pancreatic function. Despite all efforts, pancreas allograft survival and rejection remain major clinical problems. The purpose of this study was to identify features that could signal patients at risk of pancreas allograft rejection. Methods: We collected 74 features from 79 patients who underwent simultaneous pancreas–kidney transplantation (SPK) and used two widely-applicable classification methods, the Naive Bayesian Classifier and Support Vector Machine, to build predictive models. We used the area under the receiver operating characteristic curve and classification accuracy to evaluate the predictive performance via leave-one-out cross-validation. Results: Rejection events were identified in 13 SPK patients (17.8%). In feature selection approach, it was possible to identify 10 features, namely: previous treatment for diabetes mellitus with long-term Insulin (U/I/day), type of dialysis (peritoneal dialysis, hemodialysis, or pre-emptive), de novo DSA, vPRA_Pre-Transplant (%), donor blood glucose, pancreas donor risk index (pDRI), recipient height, dialysis time (days), warm ischemia (minutes), recipient of intensive care (days). The results showed that the Naive Bayes and Support Vector Machine classifiers prediction performed very well, with an AUROC and classification accuracy of 0.97 and 0.87, respectively, in the first model and 0.96 and 0.94 in the second model. Conclusion: Our results indicated that it is feasible to develop successful classifiers for the prediction of graft rejection. The Naive Bayesian generated nomogram can be used for rejection probability prediction, thus supporting clinical decision making.publishersversionpublishe

    Emerging Technologies in Healthcare: Analysis of UNOS Data Through Machine Learning

    Full text link
    The healthcare industry is primed for a massive transformation in the coming decades due to emerging technologies such as Artificial Intelligence (AI) and Machine Learning. With a practical application to the UNOS (United Network of Organ Sharing) database, this Thesis seeks to investigate how Machine Learning and analytic methods may be used to predict one-year heart transplantation outcomes. This study also sought to improve on predictive performances from prior studies by analyzing both Donor and Recipient data. Models built with algorithms such as Stacking and Tree Boosting gave the highest performance, with AUC’s of 0.6810 and 0.6804, respectively. In this work, a roadmap was created that justifies the need for these technologies in healthcare. In application, the data was prepared, models were built using advanced algorithms, and important variables were selected. These steps were continuously done with validation from experienced clinicians. To yield greater insights in this study, the dataset was split row-wise by factors such as LVAD Support, Donor/Recipient Gender Combinations, and Time Period; this rendered 8 new datasets for analysis. This work explores the trade-off between interpretability and performance in applying analytic methods in a real-world problem in this domain. Finally, forward looking industry implications are discussed

    CODUSA - Customize Optimal Donor Using Simulated Annealing In Heart Transplantation.

    Get PDF
    In heart transplantation, selection of an optimal recipient-donor match has been constrained by the lack of individualized prediction models. Here we developed a customized donor-matching model (CODUSA) for patients requiring heart transplantations, by combining simulated annealing and artificial neural networks. Using this approach, by analyzing 59,698 adult heart transplant patients, we found that donor age matching was the variable most strongly associated with long-term survival. Female hearts were given to 21% of the women and 0% of the men, and recipients with blood group B received identical matched blood group in only 18% of best-case match compared with 73% for the original match. By optimizing the donor profile, the survival could be improved with 33 months. These findings strongly suggest that the CODUSA model can improve the ability to select optimal match and avoid worst-case match in the clinical setting. This is an important step towards personalized medicine

    Gene Expression Profiling of Bronchoalveolar Lavage Cells Preceding a Clinical Diagnosis of Chronic Lung Allograft Dysfunction.

    Get PDF
    BackgroundChronic Lung Allograft Dysfunction (CLAD) is the main limitation to long-term survival after lung transplantation. Although CLAD is usually not responsive to treatment, earlier identification may improve treatment prospects.MethodsIn a nested case control study, 1-year post transplant surveillance bronchoalveolar lavage (BAL) fluid samples were obtained from incipient CLAD (n = 9) and CLAD free (n = 8) lung transplant recipients. Incipient CLAD cases were diagnosed with CLAD within 2 years, while controls were free from CLAD for at least 4 years following bronchoscopy. Transcription profiles in the BAL cell pellets were assayed with the HG-U133 Plus 2.0 microarray (Affymetrix). Differential gene expression analysis, based on an absolute fold change (incipient CLAD vs no CLAD) &gt;2.0 and an unadjusted p-value ≤0.05, generated a candidate list containing 55 differentially expressed probe sets (51 up-regulated, 4 down-regulated).ResultsThe cell pellets in incipient CLAD cases were skewed toward immune response pathways, dominated by genes related to recruitment, retention, activation and proliferation of cytotoxic lymphocytes (CD8+ T-cells and natural killer cells). Both hierarchical clustering and a supervised machine learning tool were able to correctly categorize most samples (82.3% and 94.1% respectively) into incipient CLAD and CLAD-free categories.ConclusionsThese findings suggest that a pathobiology, similar to AR, precedes a clinical diagnosis of CLAD. A larger prospective investigation of the BAL cell pellet transcriptome as a biomarker for CLAD risk stratification is warranted
    corecore