346 research outputs found

    Selection of amplifier for optimized charge transfer in active pixel CMOS time of flight (TOF) image sensors.

    Get PDF
    Although CMOS Time-of-Flight Range Image Sensors have been recently realized, the fabrication process in modified by inserting an extra mask layer to allow efficient TOF dependent charge transfer

    Advances on CMOS image sensors

    Get PDF
    This paper offers an introduction to the technological advances of image sensors designed using complementary metal–oxide–semiconductor (CMOS) processes along the last decades. We review some of those technological advances and examine potential disruptive growth directions for CMOS image sensors and proposed ways to achieve them. Those advances include breakthroughs on image quality such as resolution, capture speed, light sensitivity and color detection and advances on the computational imaging. The current trend is to push the innovation efforts even further as the market requires higher resolution, higher speed, lower power consumption and, mainly, lower cost sensors. Although CMOS image sensors are currently used in several different applications from consumer to defense to medical diagnosis, product differentiation is becoming both a requirement and a difficult goal for any image sensor manufacturer. The unique properties of CMOS process allows the integration of several signal processing techniques and are driving the impressive advancement of the computational imaging. With this paper, we offer a very comprehensive review of methods, techniques, designs and fabrication of CMOS image sensors that have impacted or might will impact the images sensor applications and markets

    A Bulk Driven Transimpedance CMOS Amplifier for SiPM Based Detection

    Get PDF
    The contribution of this work lies in the development of a bulk driven operationaltransconducctance amplifier which can be integrated with other analog circuits andphotodetectors in the same chip for compactness, miniaturization and reducing thepower. Silicon photomultipliers, also known as SiPMs, when coupled with scintillator materials are used in many imaging applications including nuclear detection. This thesis discuss the design of a bulk-driven transimpedance amplifier suitable for detectors where the front end is a SiPM. The amplifier was design and fabricated in a standard standard CMOS process and is suitable for integration with CMOS based SiPMs and commercially available SiPMs. Specifically, the amplifier was verified in simulations and experiment using circuit models for the SiPM. The bulk-driven amplifier’s performance, was compared to a commerciallyavailable amplifier with approximately the same open loop gain (70dB). Bothamplifiers were verified with two different light sources, a scintillator and a SiPM.The energy resolution using the bulk driven amplifier was 8.6% and was 14.2% forthe commercial amplifier indicating the suitability of the amplifier design for portable systems

    Ultra-low noise, high-frame rate readout design for a 3D-stacked CMOS image sensor

    Get PDF
    Due to the switch from CCD to CMOS technology, CMOS based image sensors have become smaller, cheaper, faster, and have recently outclassed CCDs in terms of image quality. Apart from the extensive set of applications requiring image sensors, the next technological breakthrough in imaging would be to consolidate and completely shift the conventional CMOS image sensor technology to the 3D-stacked technology. Stacking is recent and an innovative technology in the imaging field, allowing multiple silicon tiers with different functions to be stacked on top of each other. The technology allows for an extreme parallelism of the pixel readout circuitry. Furthermore, the readout is placed underneath the pixel array on a 3D-stacked image sensor, and the parallelism of the readout can remain constant at any spatial resolution of the sensors, allowing extreme low noise and a high-frame rate (design) at virtually any sensor array resolution. The objective of this work is the design of ultra-low noise readout circuits meant for 3D-stacked image sensors, structured with parallel readout circuitries. The readout circuit’s key requirements are low noise, speed, low-area (for higher parallelism), and low power. A CMOS imaging review is presented through a short historical background, followed by the description of the motivation, the research goals, and the work contributions. The fundamentals of CMOS image sensors are addressed, as a part of highlighting the typical image sensor features, the essential building blocks, types of operation, as well as their physical characteristics and their evaluation metrics. Following up on this, the document pays attention to the readout circuit’s noise theory and the column converters theory, to identify possible pitfalls to obtain sub-electron noise imagers. Lastly, the fabricated test CIS device performances are reported along with conjectures and conclusions, ending this thesis with the 3D-stacked subject issues and the future work. A part of the developed research work is located in the Appendices.Devido à mudança da tecnologia CCD para CMOS, os sensores de imagem em CMOS tornam se mais pequenos, mais baratos, mais rápidos, e mais recentemente, ultrapassaram os sensores CCD no que respeita à qualidade de imagem. Para além do vasto conjunto de aplicações que requerem sensores de imagem, o próximo salto tecnológico no ramo dos sensores de imagem é o de mudar completamente da tecnologia de sensores de imagem CMOS convencional para a tecnologia “3D-stacked”. O empilhamento de chips é relativamente recente e é uma tecnologia inovadora no campo dos sensores de imagem, permitindo vários planos de silício com diferentes funções poderem ser empilhados uns sobre os outros. Esta tecnologia permite portanto, um paralelismo extremo na leitura dos sinais vindos da matriz de píxeis. Além disso, num sensor de imagem de planos de silício empilhados, os circuitos de leitura estão posicionados debaixo da matriz de píxeis, sendo que dessa forma, o paralelismo pode manter-se constante para qualquer resolução espacial, permitindo assim atingir um extremo baixo ruído e um alto debito de imagens, virtualmente para qualquer resolução desejada. O objetivo deste trabalho é o de desenhar circuitos de leitura de coluna de muito baixo ruído, planeados para serem empregues em sensores de imagem “3D-stacked” com estruturas altamente paralelizadas. Os requisitos chave para os circuitos de leitura são de baixo ruído, rapidez e pouca área utilizada, de forma a obter-se o melhor rácio. Uma breve revisão histórica dos sensores de imagem CMOS é apresentada, seguida da motivação, dos objetivos e das contribuições feitas. Os fundamentos dos sensores de imagem CMOS são também abordados para expor as suas características, os blocos essenciais, os tipos de operação, assim como as suas características físicas e suas métricas de avaliação. No seguimento disto, especial atenção é dada à teoria subjacente ao ruído inerente dos circuitos de leitura e dos conversores de coluna, servindo para identificar os possíveis aspetos que dificultem atingir a tão desejada performance de muito baixo ruído. Por fim, os resultados experimentais do sensor desenvolvido são apresentados junto com possíveis conjeturas e respetivas conclusões, terminando o documento com o assunto de empilhamento vertical de camadas de silício, junto com o possível trabalho futuro

    Proof-of-concept of a single-point Time-of-Flight LiDAR system and guidelines towards integrated high-accuracy timing, advanced polarization sensing and scanning with a MEMS micromirror

    Get PDF
    Dissertação de mestrado integrado em Engenharia Física (área de especialização em Dispositivos, Microssistemas e Nanotecnologias)The core focus of the work reported herein is the fulfillment of a functional Light Detection and Ranging (LiDAR) sensor to validate the direct Time-of-Flight (ToF) ranging concept and the acquisition of critical knowledge regarding pivotal aspects jeopardizing the sensor’s performance, for forthcoming improvements aiming a realistic sensor targeted towards automotive applications. Hereupon, the ToF LiDAR system is implemented through an architecture encompassing both optical and electronical functions and is subsequently characterized under a sequence of test procedures usually applied in benchmarking of LiDAR sensors. The design employs a hybrid edge-emitting laser diode (pulsed at 6kHz, 46ns temporal FWHM, 7ns rise-time; 919nm wavelength with 5nm FWHM), a PIN photodiode to detect the back-reflected radiation, a transamplification stage and two Time-to-Digital Converters (TDCs), with leading-edge discrimination electronics to mark the transit time between emission and detection events. Furthermore, a flexible modular design is adopted using two separate Printed Circuit Boards (PCBs), comprising the transmitter (TX) and the receiver (RX), i.e. detection and signal processing. The overall output beam divergence is 0.4º×1º and an optical peak power of 60W (87% overall throughput) is realized. The sensor is tested indoors from 0.56 to 4.42 meters, and the distance is directly estimated from the pulses transit time. The precision within these working distances ranges from 4cm to 7cm, reflected in a Signal-to-Noise Ratio (SNR) between 12dB and 18dB. The design requires a calibration procedure to correct systematic errors in the range measurements, induced by two sources: the timing offset due to architecture-inherent differences in the optoelectronic paths and a supplementary bias resulting from the design, which renders an intensity dependence and is denoted time-walk. The calibrated system achieves a mean accuracy of 1cm. Two distinct target materials are used for characterization and performance evaluation: a metallic automotive paint and a diffuse material. This selection is representative of two extremes of actual LiDAR applications. The optical and electronic characterization is thoroughly detailed, including the recognition of a good agreement between empirical observations and simulations in ZEMAX, for optical design, and in a SPICE software, for the electrical subsystem. The foremost meaningful limitation of the implemented design is identified as an outcome of the leading-edge discrimination. A proposal for a Constant Fraction Discriminator addressing sub-millimetric accuracy is provided to replace the previous signal processing element. This modification is mandatory to virtually eliminate the aforementioned systematic bias in range sensing due to the intensity dependency. A further crucial addition is a scanning mechanism to supply the required Field-of-View (FOV) for automotive usage. The opto-electromechanical guidelines to interface a MEMS micromirror scanner, achieving a 46º×17º FOV, with the LiDAR sensor are furnished. Ultimately, a proof-of-principle to the use of polarization in material classification for advanced processing is carried out, aiming to complement the ToF measurements. The original design is modified to include a variable wave retarder, allowing the simultaneous detection of orthogonal linear polarization states using a single detector. The material classification with polarization sensing is tested with the previously referred materials culminating in an 87% and 11% degree of linear polarization retention from the metallic paint and the diffuse material, respectively, computed by Stokes parameters calculus. The procedure was independently validated under the same conditions with a micro-polarizer camera (92% and 13% polarization retention).O intuito primordial do trabalho reportado no presente documento é o desenvolvimento de um sensor LiDAR funcional, que permita validar o conceito de medição direta do tempo de voo de pulsos óticos para a estimativa de distância, e a aquisição de conhecimento crítico respeitante a aspetos fundamentais que prejudicam a performance do sensor, ambicionando melhorias futuras para um sensor endereçado para aplicações automóveis. Destarte, o sistema LiDAR é implementado através de uma arquitetura que engloba tanto funções óticas como eletrónicas, sendo posteriormente caracterizado através de uma sequência de testes experimentais comumente aplicáveis em benchmarking de sensores LiDAR. O design tira partido de um díodo de laser híbrido (pulsado a 6kHz, largura temporal de 46ns; comprimento de onda de pico de 919nm e largura espetral de 5nm), um fotodíodo PIN para detetar a radiação refletida, um andar de transamplificação e dois conversores tempo-digital, com discriminação temporal com threshold constante para marcar o tempo de trânsito entre emissão e receção. Ademais, um design modular flexível é adotado através de duas PCBs independentes, compondo o transmissor e o recetor (deteção e processamento de sinal). A divergência global do feixe emitido para o ambiente circundante é 0.4º×1º, apresentando uma potência ótica de pico de 60W (eficiência de 87% na transmissão). O sensor é testado em ambiente fechado, entre 0.56 e 4.42 metros. A precisão dentro das distâncias de trabalho varia entre 4cm e 7cm, o que se reflete numa razão sinal-ruído entre 12dB e 18dB. O design requer calibração para corrigir erros sistemáticos nas distâncias adquiridas devido a duas fontes: o desvio no ToF devido a diferenças nos percursos optoeletrónicos, inerentes à arquitetura, e uma dependência adicional da intensidade do sinal refletido, induzida pela técnica de discriminação implementada e denotada time-walk. A exatidão do sistema pós-calibração perfaz um valor médio de 1cm. Dois alvos distintos são utilizados durante a fase de caraterização e avaliação performativa: uma tinta metálica aplicada em revestimentos de automóveis e um material difusor. Esta seleção é representativa de dois cenários extremos em aplicações reais do LiDAR. A caraterização dos subsistemas ótico e eletrónico é minuciosamente detalhada, incluindo a constatação de uma boa concordância entre observações empíricas e simulações óticas em ZEMAX e elétricas num software SPICE. O principal elemento limitante do design implementado é identificado como sendo a técnica de discriminação adotada. Por conseguinte, é proposta a substituição do anterior bloco por uma técnica de discriminação a uma fração constante do pulso de retorno, com exatidões da ordem sub-milimétrica. Esta modificação é imperativa para eliminar o offset sistemático nas medidas de distância, decorrente da dependência da intensidade do sinal. Uma outra inclusão de extrema relevância é um mecanismo de varrimento que assegura o cumprimento dos requisitos de campo de visão para aplicações automóveis. As diretrizes para a integração de um micro-espelho no sensor concebido são providenciadas, permitindo atingir um campo de visão de 46º×17º. Conclusivamente, é feita uma prova de princípio para a utilização da polarização como complemento das medições do tempo de voo, de modo a suportar a classificação de materiais em processamento avançado. A arquitetura original é modificada para incluir uma lâmina de atraso variável, permitindo a deteção de estados de polarização ortogonais com um único fotodetetor. A classificação de materiais através da aferição do estado de polarização da luz refletida é testada para os materiais supramencionados, culminando numa retenção de polarização de 87% (tinta metálica) e 11% (difusor), calculados através dos parâmetros de Stokes. O procedimento é independentemente validado com uma câmara polarimétrica nas mesmas condições (retenção de 92% e 13%)

    High Performance CMOS Range Imaging

    Get PDF
    Diese Arbeit fokussiert sich auf die Modellierung, Charakterisierung und Optimierung von Rauschen um den Entwurf von hochperformanten CMOS-Bildsensoren im Allgemeinen und von distanzgebenden Bildsensoren im Speziellen zu unterstützen. CMOS Bildsensorik ist bekannt dafür, den CCD-Sensoren bezüglich Flexibilität überlegen zu sein, aber modifizierter Prozesse zu bedürfen um vergleichbare Leistung in Parametern wie Rauschen, Dynamik oder Empfindlichkeit zu erreichen. Rauschen wird als einer der wichtigsten Parameter erachtet, da es die erreichbare Genauigkeit maßgeblich limitiert und nicht korrigiert werden kann. Diese Thesis präsentiert einen Überblick über die weit gefächerte Theorie des Rauschens und fügt ihr eine Methodik hinzu die Rauschperformance von zeitlich abgetasteten Systemen zu schätzen. Eine Charakterisierung der verfügbaren Bauelemente des verwendeten 0:35 µm 2P4M CMOS-Prozesses wurde durchgeführt und anhand heuristischer Betrachtungen und dem Kenntnisstand der Rausch-Theorie evaluiert. Diese fundamentalen Untersuchungen werden als Grundlage erachtet, die Vorhersagbarkeit der Rauschperformance von z.B. Bildsensoren zu verbessern. Rauschquellen von Fotodetektoren wurden in der Vergangenheit erforscht, wobei viele mit der Einführung der PPD minimiert werden konnten. Üblicherweise sind die verbleibenden dominanten Rauschquellen das Resetrauschen und das Rauschen der Ausleseschaltung. Um Letzteres zu verbessern, wurde eine neuartige JFET-basierte Auslesestruktur entwickelt, welche im Vergleich zu verfügbaren Standard-MOSFETs eine um ca. Faktor 100 verbesserte Rauschperformance für niedrige Frequenzen aufweist. ToF wird als eine Schlüssel-Technologie erachtet, die neue Applikationen z.B. in Machine Vision, Automobil, Surveillance und Unterhaltungselektronik ermöglicht. Das konkurrierende CW-Verfahren ist bekannt dafür, anfällig bzgl. Störungen z.B. durch Hintergrundbestrahlung zu sein. Das PM-ToF-Prinzip wird als eine vielversprechende Methode für widrige Bedingungen erachtet, die allerdings eines schnellen Fotodetektors bedarf. Diese Arbeit trug zu zwei Generationen von LDPD basierten ToF-Bildsensoren bei und präsentiert eine alternative Implementierung des MSI-PM-ToF Verfahrens. Es wurde nachgewiesen, dass diese eine wesentlich bessere Performance bzgl. Geschwindigkeit, Linearität, Dunkelstrom und Matching bietet. Ferner bietet diese Arbeit ein nichtlineares und zeitvariantes Modell des realisierten Sensorprinzips, welches ungewünschte Phänomene wie die endliche Ladungsträgergeschwindigkeit und eine parasitäre Fotoempfindlichkeit der Speicherknoten berücksichtigt, um Großsignal-, Sensitivitäts- und Rauschperformance erforschen zu können. Es wurde gezeigt, dass das Modell gegen ein "Standard"-Modell konvergiert und die Messungen gut nachbildet. Letztlich wurde die Auswirkung dieser ungewünschten Phänomene auf die Performance der Distanzmessung präsentiert.This work is dedicated to CMOS based imaging with the emphasis on the noise modeling, characterization and optimization in order to contribute to the design of high performance imagers in general and range imagers in particular. CMOS is known to be superior to CCD due to its flexibility in terms of integration capabilities, but typically has to be enhanced to compete at parameters as for instance noise, dynamic range or spectral response. Temporal noise is an important topic, since it is one of the most crucial parameters that ultimately limits the performance and cannot be corrected. This thesis gathers the widespread theory on noise and extends the theory by a non-rigorous but potentially computing efficient algorithm to estimate noise in time sampled systems. The available devices of the 0:35 µm 2P4M CMOS process were characterized for their low-frequency noise performance and mutually compared by heuristic observations and a comparison to the state of research. These investigations set the foundation for a more rigorous treatment of noise exhibition and are thus believed to improve the predictability of the performance of e.g. image sensors. Many noise sources of CMOS APS have been investigated in the past and most of them can be minimized by usage of a PPD as a photodetector. Remaining dominant noise sources typically are the reset noise and the noise from the readout circuitry. In order to improve the latter, an alternative JFET based readout structure is proposed that was designed, manufactured and measured, proving the superior low-frequency noise performance of approximately a factor of 100 compared to standard MOSFETs. ToF is one key technology to enable new applications in e.g. machine vision, automotive, surveillance or entertainment. The competing CW principle is known to be prone to errors introduced by e.g. high ambient illuminance levels. The PM ToF principle is considered to be a promising method to supply the need for depth-map perception in harsh environmental conditions, but requires a high-speed photodetector. This work contributed to two generations of LDPD based ToF range image sensors and proposed a new approach to implement the MSI PM ToF principle. This was verified to yield a significantly faster charge transfer, better linearity, dark current and matching performance. A non-linear and time-variant model is provided that takes into account undesired phenomena such as finite charge transfer speed and a parasitic sensitivity to light when the shutters should remain OFF, to allow for investigations of large-signal characteristics, sensitivity and precision. It was demonstrated that the model converges to a standard photodetector model and properly resembles the measurements. Finally the impact of these undesired phenomena on the range measurement performance is demonstrated

    Cmos Based Lensless Imaging Systems And Support Circuits

    Full text link
    While much progress has been made in various fields of study in past few decades, leading to better understanding of science as well as better quality of life, the role of optical sensing has grown among electrical, chemical, optical, and other physical signal modalities. As an example, fluorescent microscopy has become one of the most important methods in the modern biology. However, broader implementation of optical sensing has been limited due to the expensive and bulky optical and mechanical components of conventional optical sensor systems. To address such bottleneck, this dissertation presents several cost-effective, compact approaches of optical sensor arrays based on solid state devices that can replace the conventional components. As an example, in chapter 2 we demonstrate a chip-scale (<1 mm2 ) sensor, the Planar Fourier Capture Array (PFCA), capable of imaging the far-field without any off-chip optics. The PFCA consists of an array of angle-sensitive pixels manufactured in a standard semiconductor process, each of which reports one component of a spatial two-dimensional (2D) Fourier transform of the local light field. Thus, the sensor directly captures 2D Fourier transforms of scenes. The effective resolution of our prototype is approximately 400 pixels. My work on this project [15] includes a circuit design and layout and the overall testing of the imaging system. In chapter 3 we present a fully integrated, Single Photon Avalanche Detector (SPAD) using only standard low- voltage (1.8V) CMOS devices in a 0.18m process. The system requires one highvoltage AC signal which alternately reverse biases the SPADs into avalanche breakdown and then resets with a forward bias. The proposed self-quenching circuit intrinsically suppresses after-pulse effects, improving signal to noise ratio while still permitting fine time resolution. The required high-voltage AC signal can be generated by resonant structures and can be shared across arrays of SPADs [24]. An ideal light sensor to provide the precise incident intensity, location, and angle of incoming photons is shown in chapter 4. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information, and can be implemented at a pixel scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses and diffraction gratings) that are capable of encoding both spatial and angular information of the incident light. In this chapter, we describe the implementation of such grating structure on SPAD to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) using a standard CMOS process. While the underlying SPAD structure provides the high sensitivity, the diffraction gratings consisting of two sets of metal layers offers the angle-sensitivity. Such unique combination of the SPAD and the diffraction gratings expand the sensing dimensions to pave a path towards a lens-less 3-D imaging and a light-field timeof-flight imaging. In chapter 5, we present a 72 x 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3-D fluorescent life time imaging. A-SPAD pixels are comprised of (1) a SPAD to resolve precise timing information, to reject high-powered UV stimulus, and to map the lifetimes of different fluorescent sources and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of incoming light, enabling 3-D localization at a micrometer scale. The chip presented in this work also integrates pixel-level counters as well as shared timing circuitry, and is implemented in conventional 180nm CMOS technology without any post-processing. Contact-based read- out from a revolving MEMS accelerometers is problematic therefore contactless (optical) read-out is preferred. The optical readout requires an image sensor to resolve nanometer-scale shifts of the MEMS image. Traditional imagers record on a rectangular grid which is not well-suited for efficiently imaging rotating objects due to the significant processing overhead required to translate Cartesian coordinates to angular position. Therefore, in chapter 6 we demonstrate a high-speed ( 1kfps), circular, CMOS imaging array for contact-less, optical measurement of rotating inertial sensors. The imager is designed for real-time optical readout and calibration of a MEMS accelerometer revolving at greater than 1000rpm. The imager uses a uniform circular arrangement of pixels to enable rapid imaging of rotational objects. Furthermore, each photodiode itself is circular to maintain uniform response throughout the entire revolution. Combining a high frame rate and a uniform response to motion, the imager can achieve sub-pixel resolution (25nm) of the displacement of micro scale features. In order to avoid fixed pattern noise arising from non-uniform routing within the array we implemented a new global shutter technique that is insensitive to parasitic capacitance. To ease integration with various MEMS platforms, the system has SPI control, on-chip bias generation, sub-array imaging, and digital data read-out. My work on this project [20] includes a circuit design and lay- out and some testing including, a FPGA based controller design of the imaging system. In the previous chapters, compact and cost effective imaging sys- tems have been introduced. Those imaging systems show great potential for wireless implantable systems. A power rectifier for the implant provides a volt- age DC power with a small inductor, for small volume, from a small AC voltage input. In the last chapter we demonstrate an inductively powered, orthogonal current-reuse multi-channel amplifier for power-efficient neural recording. The power rectifier uses the input swing as a self-synchronous charge pump, making it a fully passive, full-wave ladder rectifier. The rectifier supplies 10.37[MICRO SIGN]W at 1.224V to the multi-channel amplifier, which includes bias generation. The prototype device is fabricated in a TSMC 65nm CMOS process, with an active area of 0.107mm2 . The maximum measured power conversion efficiency (PCE) is 16.58% with a 184mV input amplitude. My work on this project [25] in- cludes the rectifier design and overall testing to combine "orthogonal currentreuse neural amplifier" designed by Ben Johnson

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces
    corecore