42 research outputs found

    Foundations of a Bicoprime Factorization Theory

    Get PDF

    An Asynchronous Simulation Framework for Multi-User Interactive Collaboration: Application to Robot-Assisted Surgery

    Get PDF
    The field of surgery is continually evolving as there is always room for improvement in the post-operative health of the patient as well as the comfort of the Operating Room (OR) team. While the success of surgery is contingent upon the skills of the surgeon and the OR team, the use of specialized robots has shown to improve surgery-related outcomes in some cases. These outcomes are currently measured using a wide variety of metrics that include patient pain and recovery, surgeon’s comfort, duration of the operation and the cost of the procedure. There is a need for additional research to better understand the optimal criteria for benchmarking surgical performance. Presently, surgeons are trained to perform robot-assisted surgeries using interactive simulators. However, in the absence of well-defined performance standards, these simulators focus primarily on the simulation of the operative scene and not the complexities associated with multiple inputs to a real-world surgical procedure. Because interactive simulators are typically designed for specific robots that perform a small number of tasks controlled by a single user, they are inflexible in terms of their portability to different robots and the inclusion of multiple operators (e.g., nurses, medical assistants). Additionally, while most simulators provide high-quality visuals, simplification techniques are often employed to avoid stability issues for physics computation, contact dynamics and multi-manual interaction. This study addresses the limitations of existing simulators by outlining various specifications required to develop techniques that mimic real-world interactions and collaboration. Moreover, this study focuses on the inclusion of distributed control, shared task allocation and assistive feedback -- through machine learning, secondary and tertiary operators -- alongside the primary human operator

    Measurement of the CP-violating phase φs in the decay Bo/s →J/ψ/φ

    Get PDF
    The LHCb experiment is dedicated to making precision measurements involving beauty and charm hadrons at the CERN Large Hadron Collider. The LHCb RICH detectors provide charged particle identification required to distinguish final states in many decays important to the LHCb physics programme. Time alignment of the RICH photon detectors is necessary in order to ensure a high photon collection efficiency. Using both a pulsed laser and proton-proton collision data the photon detectors are aligned to within 1 ns. The LHCb detector is uniquely positioned to measure production cross-sections at energies and rapidities inaccessible to other experiments. With 1.81 nb−1 of proton-proton collisions collected by the LHCb experiment in 2010 at center-of-mass energy √s = 7 TeV the production crosssection of D±s and D± mesons decaying to the φ{K+K−}π ± final state have been determined in bins of transverse momentum and rapidity. These measurements use a data-driven recursive optimisation technique to improve signal significance. The cross-section ratio is measured to be σ(D± ) σ(D± s ) = 2.32±0.27(stat)±0.26(syst), consistent with the ratio of charm-quark hadronisation fractions to D± and D±s mesons. Time-dependent interference between mixing of B0s -B0s mesons and decay to the final state J/ψφ gives rise to a CP violating phase φs. This phase is constrained to be small within the Standard Model, a significant deviation from which would be a signal of new physics. φs has been measured with 0.37 fb−1 of protonproton collision data recorded during 2011 by the LHCb experiment. Isolation of the signal distribution is achieved using the S-plot technique, and the analysis accounts for inclusive B0s →J/ψK+K− s-wave contributions. The measured value of φs = 0.16±0.18(stat)±0.06(syst) rad is the most precise measurement to date, and is consistent with Standard Model predictions

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    The ribosome builder: A software project to simulate the ribosome

    Get PDF

    Modification of a FPGA-based GPS receiver for reflectometry applications (GNSS-R)

    Get PDF
    English: Lack of frequent and global global observations from space is currently a limiting factor Earth observation missions. In recent years, as a low-cost alternative, Global Navigation Satellite System's signals Reflectometry (GNSS-R) has stood a potential powerful remote sensing technique. The existing research has shown that GNSS-R has the potential to give environmental scientist a low-cost, wide-coverage measurement network that will allow to derive geophysical parameters such as ocean altimetry, sea state or soil moisture. This data has the potential to greatly increase our knowledge of the Earth's environmental processes. During the last ten years, the Remote Sensing Laboratory of the Department of Signal Theory and Communications at the Univeristat Politècnica de Catalunya, has worked on the design and implementation of the appropriate receivers in order to track and process this GNSS-R signals in real-time to avoid the storage of huge volumes of raw data. One of its most remarkable efforts is the Passive Advanced Unit for ocean monitoring (PAU) project. In this work, the possibility of adapting an existing Global Position System (GPS) receiver for GNSS-R applications is explored. This GPS receiver is the Namuru-GPL a open source software receiver implemented for the Namuru development platform developed by the University of New South Wales Satellite Navigation and Positioning Laboratory (SNAP). A modified version of the Namuru-GPL has been implemented. This modified version of the receiver has been able to simultaneous track a C/A L1-band signal and a delayed version of it that simulated a reflected signal with the associated longer propagation path. In addition, the receiver has measured pseudorange differences with a tested resolution up 3 m with a single measurment in a controlled experimental scenario, thus validating the Namuru-GPL capabilities for GNSS-R altimetry applications. In addition, a new Acquisition Module has been developed. This module dramatically reduces the Namuru-GPL receiver average acquisition time from a few minutes to 2.5 s approximately, thanks to implementing the parallel code acquisition method. Moreover, the Acquisition Module requires low hardware resources and generates Delay Doppler Maps (DDMs). All the development process stages, including validation through testing of these proposed designs are summarized within this work.Castellano: La falta de observaciones frecuentes y a escala global desde el espacio es actualmente un factor limitador de las misiones de observación de la Tierra. En los últimos años, y como alternativa al uso de constelaciones de satélites de propósito especifico y alto coste, la reflectometría con señales de oportunidad de los sistemas globales de navegación por satélite (GNSS-R) ha demostrado ser una técnica de teledetección con gran potencial. Las investigaciones realizadas hasta ahora demuestran que las técnicas GNSS-R poseen el potencial para obtener datos ambientales de alto interés científico a bajo coste y con una amplia cobertura de las mediciones realizadas. Dichas mediciones permitirían obtener o mejorar la medida de parámetros geofísicos importantes, como el estado del mar, altimetría, o la humedad del suelo. Una mejor medida de dichos parámetros tienen el potencial de aumentar considerablemente nuestro conocimiento de los procesos ambientales de la Tierra. Durante los últimos diez años, el Remote Sesing Lab que pertenece al departamento de Teoría de la Señal y Comunicaciones (TSC) de la UPC, ha trabajado en el diseño y la implementación de receptores adecuados para adquirir y procesar señales GNSS-R en tiempo real para evitar el almacenamiento de enormes volúmenes de datos. Uno de los esfuerzos más notables es el proyecto "Passive Advanced Unit for Ocean monitoring" o proyecto PAU. En este trabajo, se explora la posibilidad de adaptar un receptor GPS para a aplicaciones GNSS-R. Este receptor es el Namuru-GPL, un receptor software open source implementado sobre la plataforma de desarrollo Namuru, desarrollada por el University of New South Wales Satellite Navigation and Positioning Laboratory (SNAP). La versión modificada del receptor Namuru-GPL que se ha implementado, ha sido capaz de seguir una señal GPS C/A en la banda L1 y simultáneamente una versión retardada de la misma que simulaba ser una señal reflejada con un camino de propagación más largo. Además, el receptor ha sido capaz de medir diferencias de pseudorangos con una resolución máxima de hasta 3 m con una única medida, en un escenario experimental controlado, validando así las capacidades del Namuru-GPL para aplicaciones de altimetría mediante GNSS-R. Además, se ha desarrollado un nuevo Módulo de Adquisición. Este módulo es capaz de reducir drásticamente el tiempo medio de adquisición del Namuru-GPL de unos pocos minutos a 2,5 s aproximadamente, gracias al método de adquisición en paralelo. Además, el Módulo de Adquisición necesita relativamente pocos recursos hardware y es capaz de generar "Delay Doppler Maps" (DDMs). Todas las etapas del proceso de desarrollo de los diseños propuestos, incluida la validación experimental se encuentran resumidos en este trabajo.Català: La manca d'observacions freqüents i a escala global des de l'espai és actualment un factor limitador de les missions d'observació de la Terra. En els últims anys, i com a alternativa a l'ús de constel·lacions de satèl·lits de propòsit específic i alt cost, la reflectometría amb senyals d'oportunitat dels sistemes globals de navegació per satèl·lit (GNSS-R) ha demostrat ser una tècnica de teledetecció amb un alt potencial. Les investigacions realitzades fins ara demostren que les tècniques GNSS-R disposen del potencial per obtenir dades ambientals d'alt interès científic a baix cost i amb una àmplia cobertura de les mesures realitzades. Aquestes mesures permetrien obtenir o millorar la mesura de paràmetres geofísics importants, tals com l'estat de la mar, altimetria, o la humitat del sòl. Una millor mesura d'aquests paràmetres té el potencial d'augmentar considerablement el nostre coneixement dels processos ambientals de la Terra. Durant els últims deu anys, el Remote Sesing Lab pertanyent al departament de Teoria del Senyal i Comunicacions (TSC) de la UPC, ha treballat en el disseny i la implementació de receptors adequats per rastrejar i processar senyals GNSS-R en temps real i evitar així haver d'emmagatzemar enormes volums de dades. Un dels seus esforços més rellevants és el projecte "Passive Advanced Unit for Ocean monitoring" o projecte PAU. En aquest treball, s'explora la possibilitat d'adaptar un receptor GPS per aplicacions GNSS-R. Aquest receptor és el Namuru-GPL, un receptor open source implementat sobre la plataforma de desenvolupament Namuru, desenvolupada pel University of New South Wales Satellite Navigation and Positioning Laboratory (SNAP). La versió modificada del receptor Namuru-GPL implementada, ha estat capaç de seguir un senyal GPS C/A a la banda L1 i simultàniament una versió retardada del mateix que simulava ser un senyal reflectit amb un camí de propagació més llarg. A més, el receptor ha estat capaç de mesurar diferències de pseudorangs amb una resolució màxima de fins a 3 m en una única mesura a un escenari experimental controlat, validant així les capacitats del Namuru-GPL per a possibles aplicacions d'altimetria mitjançant GNSS-R. També s'ha desenvolupat un nou Mòdul d'Adquisició. Aquest mòdul és capaç de reduir dràsticament el temps mitjà d'adquisició del Namuru-GPL d'uns pocs minuts a 2,5 s aproximadament, gràcies al mètode d'adquisició en paral·lel. A més, el Mòdul d'Adquisició consumeix relativament pocs recursos hardware i és capaç de generar "Delay Doppler Maps" (DDMs). Totes les etapes del procés de desenvolupament dels dissenys proposats, inclosa la seva validació experimental es troben resumits en aquest treball
    corecore