340 research outputs found

    Access Control Mechanisms in Named Data Networks:A Comprehensive Survey

    Get PDF
    Information-Centric Networking (ICN) has recently emerged as a prominent candidate for the Future Internet Architecture (FIA) that addresses existing issues with the host-centric communication model of the current TCP/IP-based Internet. Named Data Networking (NDN) is one of the most recent and active ICN architectures that provides a clean slate approach for Internet communication. NDN provides intrinsic content security where security is directly provided to the content instead of communication channel. Among other security aspects, Access Control (AC) rules specify the privileges for the entities that can access the content. In TCP/IP-based AC systems, due to the client-server communication model, the servers control which client can access a particular content. In contrast, ICN-based networks use content names to drive communication and decouple the content from its original location. This phenomenon leads to the loss of control over the content causing different challenges for the realization of efficient AC mechanisms. To date, considerable efforts have been made to develop various AC mechanisms in NDN. In this paper, we provide a detailed and comprehensive survey of the AC mechanisms in NDN. We follow a holistic approach towards AC in NDN where we first summarize the ICN paradigm, describe the changes from channel-based security to content-based security and highlight different cryptographic algorithms and security protocols in NDN. We then classify the existing AC mechanisms into two main categories: Encryption-based AC and Encryption-independent AC. Each category has different classes based on the working principle of AC (e.g., Attribute-based AC, Name-based AC, Identity-based AC, etc). Finally, we present the lessons learned from the existing AC mechanisms and identify the challenges of NDN-based AC at large, highlighting future research directions for the community.Comment: This paper has been accepted for publication by the ACM Computing Surveys. The final version will be published by the AC

    Enhancing Cache Robustness in Named Data Networks

    Full text link
    Information-centric networks (ICNs) are a category of network architectures that focus on content, rather than hosts, to more effectively support the needs of today’s users. One major feature of such networks is in-network storage, which is realized by the presence of content storage routers throughout the network. These content storage routers cache popular content object chunks close to the consumers who request them in order to reduce latency for those end users and to decrease overall network congestion. Because of their prominence, network storage devices such as content storage routers will undoubtedly be major targets for malicious users. Two primary goals of attackers are to increase cache pollution and decrease hit rate by legitimate users. This would effectively reduce or eliminate the advantages of having in-network storage. Therefore, it is crucial to defend against these types of attacks. In this thesis, we study a specific ICN architecture called Named Data Networking (NDN) and simulate several attack scenarios on different network topologies to ascertain the effectiveness of different cache replacement algorithms, such as LRU and LFU (specifically, LFU-DA.) We apply our new per-face popularity with dynamic aging (PFP-DA) scheme to the content storage routers in the network and measure both cache pollution percentages as well as hit rate experienced by legitimate consumers. The current solutions in the literature that relate to reducing the effects of cache pollution largely focus on detection of attacker behavior. Since this behavior is very unpredictable, it is not guaranteed that any detection mechanisms will work well if the attackers employ smart attacks. Furthermore, current solutions do not consider the effects of a particularly aggressive attack against any single or small set of faces (interfaces.) Therefore, we have developed three related algorithms, namely PFP, PFP-DA, and Parameterized PFP-DA. PFP ensures that interests that ingress over any given face do not overwhelm the calculated popularity of a content object chunk. PFP normalizes the ranks on all faces and uses the collective contributions of these faces to determine the overall popularity, which in turn determines what content stays in the cache and what is evicted. PFP-DA adds recency to the original PFP algorithm and ensures that content object chunks do not remain in the cache longer than their true, current popularity dictates. Finally, we explore PFP-β, a parameterized version of PFP-DA, in which a β parameter is provided that causes the popularity calculations to take on Zipf-like characteristics, which in turn reduces the numeric distance between top rated items, and lower rated items, favoring items with multi-face contribution over those with single-face contributions and those with contributions over very few faces. We explore how the PFP-based schemes can reduce impact of contributions over any given face or small number of faces on an NDN content storage router. This in turn, reduces the impact that even some of the most aggressive attackers can have when they overwhelm one or a few faces, by normalizing the contributions across all contributing faces for a given content object chunk. During attack scenarios, we conclude that PFP-DA performs better than both LRU and LFU-DA in terms of resisting the effects of cache pollution and maintaining strong hit rates. We also demonstrate that PFP-DA performs better even when no attacks are being leveraged against the content store. This opens the door for further research both within and outside of ICN-based architectures as a means to enhance security and overall performance.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/145175/1/John Baugh Final Dissertation.pdfDescription of John Baugh Final Dissertation.pdf : Dissertatio

    Seamless connectivity:investigating implementation challenges of multibroker MQTT platform for smart environmental monitoring

    Get PDF
    Abstract. This thesis explores the performance and efficiency of MQTT-based infrastructure Internet of Things (IoT) sensor networks for smart environment. The study focuses on the impact of network latency and broker switching in distributed multi-broker MQTT platforms. The research involves three case studies: a cloud-based multi-broker deployment, a Local Area Network (LAN)-based multi-broker deployment, and a multi-layer LAN network-based multi-broker deployment. The research is guided by three objectives: quantifying and analyzing the latency of multi-broker MQTT platforms; investigating the benefits of distributed brokers for edge users; and assessing the impact of switching latency at applications. This thesis ultimately seeks to answer three key questions related to network and switching latency, the merits of distributed brokers, and the influence of switching latency on the reliability of end-user applications

    The use of computational intelligence for security in named data networking

    Get PDF
    Information-Centric Networking (ICN) has recently been considered as a promising paradigm for the next-generation Internet, shifting from the sender-driven end-to-end communication paradigma to a receiver-driven content retrieval paradigm. In ICN, content -rather than hosts, like in IP-based design- plays the central role in the communications. This change from host-centric to content-centric has several significant advantages such as network load reduction, low dissemination latency, scalability, etc. One of the main design requirements for the ICN architectures -since the beginning of their design- has been strong security. Named Data Networking (NDN) (also referred to as Content-Centric Networking (CCN) or Data-Centric Networking (DCN)) is one of these architectures that are the focus of an ongoing research effort that aims to become the way Internet will operate in the future. Existing research into security of NDN is at an early stage and many designs are still incomplete. To make NDN a fully working system at Internet scale, there are still many missing pieces to be filled in. In this dissertation, we study the four most important security issues in NDN in order to defense against new forms of -potentially unknown- attacks, ensure privacy, achieve high availability, and block malicious network traffics belonging to attackers or at least limit their effectiveness, i.e., anomaly detection, DoS/DDoS attacks, congestion control, and cache pollution attacks. In order to protect NDN infrastructure, we need flexible, adaptable and robust defense systems which can make intelligent -and real-time- decisions to enable network entities to behave in an adaptive and intelligent manner. In this context, the characteristics of Computational Intelligence (CI) methods such as adaption, fault tolerance, high computational speed and error resilient against noisy information, make them suitable to be applied to the problem of NDN security, which can highlight promising new research directions. Hence, we suggest new hybrid CI-based methods to make NDN a more reliable and viable architecture for the future Internet.Information-Centric Networking (ICN) ha sido recientemente considerado como un paradigma prometedor parala nueva generación de Internet, pasando del paradigma de la comunicación de extremo a extremo impulsada por el emisora un paradigma de obtención de contenidos impulsada por el receptor. En ICN, el contenido (más que los nodos, como sucede en redes IPactuales) juega el papel central en las comunicaciones. Este cambio de "host-centric" a "content-centric" tiene varias ventajas importantes como la reducción de la carga de red, la baja latencia, escalabilidad, etc. Uno de los principales requisitos de diseño para las arquitecturas ICN (ya desde el principiode su diseño) ha sido una fuerte seguridad. Named Data Networking (NDN) (también conocida como Content-Centric Networking (CCN) o Data-Centric Networking (DCN)) es una de estas arquitecturas que son objetode investigación y que tiene como objetivo convertirse en la forma en que Internet funcionará en el futuro. Laseguridad de NDN está aún en una etapa inicial. Para hacer NDN un sistema totalmente funcional a escala de Internet, todavía hay muchas piezas que faltan por diseñar. Enesta tesis, estudiamos los cuatro problemas de seguridad más importantes de NDN, para defendersecontra nuevas formas de ataques (incluyendo los potencialmente desconocidos), asegurar la privacidad, lograr una alta disponibilidad, y bloquear los tráficos de red maliciosos o al menos limitar su eficacia. Estos cuatro problemas son: detección de anomalías, ataques DoS / DDoS, control de congestión y ataques de contaminación caché. Para solventar tales problemas necesitamos sistemas de defensa flexibles, adaptables y robustos que puedantomar decisiones inteligentes en tiempo real para permitir a las entidades de red que se comporten de manera rápida e inteligente. Es por ello que utilizamos Inteligencia Computacional (IC), ya que sus características (la adaptación, la tolerancia a fallos, alta velocidad de cálculo y funcionamiento adecuado con información con altos niveles de ruido), la hace adecuada para ser aplicada al problema de la seguridad ND

    Live media production: multicast optimization and visibility for clos fabric in media data centers

    Get PDF
    Media production data centers are undergoing a major architectural shift to introduce digitization concepts to media creation and media processing workflows. Content companies such as NBC Universal, CBS/Viacom and Disney are modernizing their workflows to take advantage of the flexibility of IP and virtualization. In these new environments, multicast is utilized to provide point-to-multi-point communications. In order to build point-to-multi-point trees, Multicast has an established set of control protocols such as IGMP and PIM. The existing multicast protocols do not optimize multicast tree formation for maximizing network throughput which lead to decreased fabric utilization and decreased total number of admitted flows. In addition, existing multicast protocols are not bandwidth-aware and could cause links to over-subscribe leading to packet loss and lower video quality. TV production traffic patterns are unique due to ultra high bandwidth requirements and high sensitivity to packet loss that leads to video impairments. In such environments, operators need monitoring tools that are able to proactively monitor video flows and provide actionable alerts. Existing network monitoring tools are inadequate because they are reactive by design and perform generic monitoring of flows with no insights into video domain. The first part of this dissertation includes a design and implementation of a novel Intelligent Rendezvous Point algorithm iRP for bandwidth-aware multicast routing in media DC fabrics. iRP utilizes a controller-based architecture to optimize multicast tree formation and to increase bandwidth availability in the fabric. The system offers up to 50\% increase in fabric capacity to handle multicast flows passing through the fabric. In the second part of this dissertation, DiRP algorithm is presented. DiRP is based on a distributed decision-making approach to achieve multicast tree capacity optimization while maintaining low multicast tree setup time. DiRP algorithm is tested using commercially available data center switches. DiRP algorithm offers substantially lower path setup time compared to centralized systems while maintaining bandwidth awareness when setting up the fabric. The third part of this dissertation studies the utilization of machine learning algorithms to improve on multicast efficiency in the fabric. The work includes implementation and testing of LiRP algorithm to increase iRP\u27s fabric efficiency by implementing k-fold cross validation method to predict future multicast group memberships for time-series analysis. Testing results confirm that LiRP system increases the efficiency of iRP by up to 40\% through prediction of multicast group memberships with online arrival. In the fourth part of this dissertation, The problem of live video monitoring is studied. Existing network monitoring tools are either reactive by design or perform generic monitoring of flows with no insights into video domain. MediaFlow is a robust system for active network monitoring and reporting of video quality for thousands of flows simultaneously using a fraction of the cost of traditional monitoring solutions. MediaFlow is able to detect and report on integrity of video flows at a granularity of 100 mSec at line rate for thousands of flows. The system increases video monitoring scale by a thousand-fold compared to edge monitoring solutions

    A flexible information service for management of virtualized software-defined infrastructures

    Get PDF
    Summary There is a major shift in the Internet towards using programmable and virtualized network devices, offering significant flexibility and adaptability. New networking paradigms such as software-defined networking and network function virtualization bring networks and IT domains closer together using appropriate architectural abstractions. In this context, new and novel information management features need to be introduced. The deployed management and control entities in these environments should have a clear, and often global, view of the network environment and should exchange information in alternative ways (e.g. some may have real-time constraints, while others may be throughput sensitive). Our work addresses these two network management features. In this paper, we define the research challenges in information management for virtualized highly dynamic environments. Along these lines, we introduce and present the design details of the virtual infrastructure information service, a new management information handling framework that (i) provides logically centralized information flow establishment, optimization, coordination, synchronization and management with respect to the diverse management and control entity demands; (ii) is designed according to the characteristics and requirements of software-defined networking and network function virtualization; and (iii) inter-operates with our own virtualized infrastructure framework. Evaluation results demonstrating the flexible and adaptable behaviour of the virtual infrastructure information service and its main operations are included in the paper. Copyright © 2016 John Wiley & Sons, Ltd

    Segurança e privacidade em terminologia de rede

    Get PDF
    Security and Privacy are now at the forefront of modern concerns, and drive a significant part of the debate on digital society. One particular aspect that holds significant bearing in these two topics is the naming of resources in the network, because it directly impacts how networks work, but also affects how security mechanisms are implemented and what are the privacy implications of metadata disclosure. This issue is further exacerbated by interoperability mechanisms that imply this information is increasingly available regardless of the intended scope. This work focuses on the implications of naming with regards to security and privacy in namespaces used in network protocols. In particular on the imple- mentation of solutions that provide additional security through naming policies or increase privacy. To achieve this, different techniques are used to either embed security information in existing namespaces or to minimise privacy ex- posure. The former allows bootstraping secure transport protocols on top of insecure discovery protocols, while the later introduces privacy policies as part of name assignment and resolution. The main vehicle for implementation of these solutions are general purpose protocols and services, however there is a strong parallel with ongoing re- search topics that leverage name resolution systems for interoperability such as the Internet of Things (IoT) and Information Centric Networks (ICN), where these approaches are also applicable.Segurança e Privacidade são dois topicos que marcam a agenda na discus- são sobre a sociedade digital. Um aspecto particularmente subtil nesta dis- cussão é a forma como atribuímos nomes a recursos na rede, uma escolha com consequências práticas no funcionamento dos diferentes protocols de rede, na forma como se implementam diferentes mecanismos de segurança e na privacidade das várias partes envolvidas. Este problema torna-se ainda mais significativo quando se considera que, para promover a interoperabili- dade entre diferentes redes, mecanismos autónomos tornam esta informação acessível em contextos que vão para lá do que era pretendido. Esta tese foca-se nas consequências de diferentes políticas de atribuição de nomes no contexto de diferentes protocols de rede, para efeitos de segurança e privacidade. Com base no estudo deste problema, são propostas soluções que, através de diferentes políticas de atribuição de nomes, permitem introdu- zir mecanismos de segurança adicionais ou mitigar problemas de privacidade em diferentes protocolos. Isto resulta na implementação de mecanismos de segurança sobre protocolos de descoberta inseguros, assim como na intro- dução de mecanismos de atribuiçao e resolução de nomes que se focam na protecçao da privacidade. O principal veículo para a implementação destas soluções é através de ser- viços e protocolos de rede de uso geral. No entanto, a aplicabilidade destas soluções extende-se também a outros tópicos de investigação que recorrem a mecanismos de resolução de nomes para implementar soluções de intero- perabilidade, nomedamente a Internet das Coisas (IoT) e redes centradas na informação (ICN).Programa Doutoral em Informátic
    • …
    corecore