109 research outputs found

    Selection of network parameters in wireless control of bilateral teleoperated manipulators.

    Get PDF
    This paper describes how to establish performance charts for selection of network parameters for effective utilization of a bilateral teleoperated manipulator working under a wireless communication channel. The goal is to construct a set of charts that help researchers and engineers to select appropriate parameters of wireless network setup for a known configuration of environment obstruction. To achieve this goal, a teleoperated setup comprising a master haptic device, a slave manipulator dynamic simulator, and a communication channel emulated using the network simulator version 2 (NS2) simulator is first developed. Next, performance indices are defined to evaluate the quality of position tracking of the slave manipulator end-effector and force tracking of the master haptic. Three indices chosen in this paper are the integral of squared position and force errors, the integral of absolute position and force error, and the amplitude of position and force overshoot. Extensive experiments on the developed setup are then conducted to study effects of time-varying packet loss on the performance of the teleoperated system. The largest mean packet loss, at which the system exhibits satisfactory tracking, is then quantified. This packet loss is used as an indicator to define regions representing the quality of tracking. The effectiveness of the proposed technique is validated by testing a fully instrumented hydraulically actuated system under various real wireless channel scenarios

    Position referenced force augmentation in teleoperated hydraulic manipulators operating under delayed and lossy networks: a pilot study.

    Get PDF
    Position error between motions of the master and slave end-effectors is inevitable as it originates from hard-to-avoid imperfections in controller design and model uncertainty. Moreover, when a slave manipulator is controlled through a delayed and lossy communication channel, the error between the desired motion originating from the master device and the actual movement of the slave manipulator end-effector is further exacerbated. This paper introduces a force feedback scheme to alleviate this problem by simply guiding the operator to slow down the haptic device motion and, in turn, allows the slave manipulator to follow the desired trajectory closely. Using this scheme, the master haptic device generates a force, which is proportional to the position error at the slave end-effector, and opposite to the operator's intended motion at the master site. Indeed, this force is a signal or cue to the operator for reducing the hand speed when position error, due to delayed and lossy network, appears at the slave site. Effectiveness of the proposed scheme is validated by performing experiments on a hydraulic telemanipulator setup developed for performing live-line maintenance. Experiments are conducted when the system operates under both dedicated and wireless networks. Results show that the scheme performs well in reducing the position error between the haptic device and the slave end-effector. Specifically, by utilizing the proposed force, the mean position error, for the case presented here, reduces by at least 92% as compared to the condition without the proposed force augmentation scheme. The scheme is easy to implement, as the only required on-line measurement is the angular displacement of the slave manipulator joints

    A prototype telerobotic platform for live transmission line maintenance: review of design and development.

    Get PDF
    This paper reports technical design of a novel experimental test facility, using haptic-enabled teleoperation of robotic manipulators, for live transmission line maintenance. The goal is to study and develop appropriate techniques in repair overhead power transmission lines by allowing linemen to wirelessly guide a remote manipulator, installed on a crane bucket, to execute dexterous maintenance tasks, such as twisting a tie wire around a cable. Challenges and solutions for developing such a system are outlined. The test facility consists of a PHANToM Desktop haptic device (master site), an industrial hydraulic manipulator (slave site) mounted atop a Stewart platform, and a wireless communication channel connecting the master and slave sites. The teleoperated system is tested under different force feedback schemes, while the base is excited and the communication channel is delayed and/or lossy to emulate realistic network behaviors. The force feedback schemes are: virtual fixture, augmentation force and augmented virtual fixture. Performance of each scheme is evaluated under three measures: task completion time, number of failed trials and displacement of the slave manipulator end-effector. The developed test rig has been shown to be successful in performing haptic-enabled teleoperation for live-line maintenance in a laboratory setting. The authors aim at establishing a benchmark test facility for objective evaluation of ideas and concepts in the teleoperation of live-line maintenance tasks

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    FoReCo: a forecast-based recovery mechanism for real-time remote control of robotic manipulators

    Get PDF
    Wireless communications represent a game changer for future manufacturing plants, enabling flexible production chains as machinery and other components are not restricted to a location by the rigid wired connections on the factory floor. However, the presence of electromagnetic interference in the wireless spectrum may result in packet loss and delay, making it a challenging environment to meet the extreme reliability requirements of industrial applications. In such conditions, achieving real-time remote control, either from the Edge or Cloud, becomes complex. In this paper, we investigate a forecast-based recovery mechanism for real-time remote control of robotic manipulators (FoReCo) that uses Machine Learning (ML) to infer lost commands caused by interference in the wireless channel. FoReCo is evaluated through both simulation and experimentation in interference prone IEEE 802.11 wireless links, and using a commercial research robot that performs pick-and-place tasks. Results show that in case of interference, FoReCo trajectory error is decreased by x18 and x2 times in simulation and experimentation, and that FoReCo is sufficiently lightweight to be deployed in the hardware of already used in existing solutions.This work has been partially funded by European Union's Horizon 2020 research and innovation programme under grant agreement No 101015956, and the Spanish Ministry of Economic Affairs and Digital Transformation and the European Union-NextGenerationEU through the UNICO 5G I+D 6GEDGEDT and 6G-DATADRIVE

    A Framework for Improving the Speed and Performance of Teleoperated Mobile Manipulators.

    Full text link
    Despite recent advances in robot autonomy, teleoperation remains an integral part of many robot tasks. In situations where it is hazardous or difficult for humans to be present, but which require human judgment and decision-making skills, the use of a human operator is the only option. However, there are many issues resulting from limited feedback channels that degrade perception and manipulation abilities in remote environments, causing even basic robot tasks to be difficult and time-consuming. For robots to become more useful tools for humans in remote environments, the speed and ease of teleoperated tasks must be increased. This purpose of this dissertation is to develop a framework for increasing speed and performance of teleoperated mobile robot tasks. First, the key issues affecting teleoperated robot system performance are defined and characterized. These factors are incorporated into an optimization-based approach for evaluating multiple design options for teleoperated systems. This optimization may require models for system components that are not readily available, and must be estimated or measured empirically. Modeling user performance in teleoperation tasks can be particularly difficult. This dissertation focuses on obtaining such models by performing several user studies designed to predict the teleoperator performance in response to multiple manual input devices and visual feedback mechanisms, as well as varying system latencies. The overall framework for improving system performance is based on incorporating the derived, estimated, and measured component models into the implementation of the design optimization over a series of operations in the teleoperation system's required task set. The contributions of this dissertation are as follows: 1) An identification of the factors limiting teleoperation system performance. 2) A framework for performing design optimization of teleoperated mobile robot speed and performance. 3) An evaluation of teleoperator performance with two different manual interfaces and two different visualization interfaces. 4) The development of a performance model for a path-following steering task under different latency conditions that indicates a possible mapping between performance under constant latency and variable latency. 5) The development and validation of a driver model capable of generating human-like steering inputs to a mobile robot.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102482/1/svozar_1.pd

    Position / force control of systems subjected to communicaton delays and interruptions in bilateral teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 65-68)Text in English; Abstract: Turkish and Englishix, 76 leavesTeleoperation technology allows to remotely operate robotic (slave) systems located in hazardous, risky and distant environments. The human operator sends commands through the controller (master) system to execute the tasks from a distance. The operator is provided with necessary (visual, audio or haptic) feedback to accomplish the mission remotely. In bilateral teleoperation, continuous feedback from the remote environment is generated. Thus, the operator can handle the task as if the operator is in the remote environment relying on the relevant feedback. Since teleoperation deals with systems controlled from a distance, time delays and package losses in transmission of information are present. These communication failures affect the human perception and system stability, and thus, the ability of operator to handle the task successfully. The objective of this thesis is to investigate and develop a control algorithm, which utilizes model mediated teleoperation integrating parallel position/force controllers, to compensate for the instability issues and excessive forcing applied to the environment arising from communication failures. Model mediation technique is extended for three-degrees-of-freedom teleoperation and a parallel position/force controller, impedance controller, is integrated in the control algorithm. The proposed control method is experimentally tested by using Matlab Simulink blocksets for real-time experimentation in which haptic desktop devices, Novint Falcon and Phantom Desktop are configured as master and slave subsystems of the bilateral teleoperation. The results of these tests indicate that the stability and passivity of proposed bilateral teleoperation systems are preserved during constant and variable time delays and data losses while the position and force tracking test results provide acceptable performance with bounded errors

    Virtual and Mixed Reality in Telerobotics: A Survey

    Get PDF
    corecore