749 research outputs found

    Gene Expression Analysis Methods on Microarray Data a A Review

    Get PDF
    In recent years a new type of experiments are changing the way that biologists and other specialists analyze many problems. These are called high throughput experiments and the main difference with those that were performed some years ago is mainly in the quantity of the data obtained from them. Thanks to the technology known generically as microarrays, it is possible to study nowadays in a single experiment the behavior of all the genes of an organism under different conditions. The data generated by these experiments may consist from thousands to millions of variables and they pose many challenges to the scientists who have to analyze them. Many of these are of statistical nature and will be the center of this review. There are many types of microarrays which have been developed to answer different biological questions and some of them will be explained later. For the sake of simplicity we start with the most well known ones: expression microarrays

    Selecting subsets of newly extracted features from PCA and PLS in microarray data analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dimension reduction is a critical issue in the analysis of microarray data, because the high dimensionality of gene expression microarray data set hurts generalization performance of classifiers. It consists of two types of methods, i.e. feature selection and feature extraction. Principle component analysis (PCA) and partial least squares (PLS) are two frequently used feature extraction methods, and in the previous works, the top several components of PCA or PLS are selected for modeling according to the descending order of eigenvalues. While in this paper, we prove that not all the top features are useful, but features should be selected from all the components by feature selection methods.</p> <p>Results</p> <p>We demonstrate a framework for selecting feature subsets from all the newly extracted components, leading to reduced classification error rates on the gene expression microarray data. Here we have considered both an unsupervised method PCA and a supervised method PLS for extracting new components, genetic algorithms for feature selection, and support vector machines and <it>k </it>nearest neighbor for classification. Experimental results illustrate that our proposed framework is effective to select feature subsets and to reduce classification error rates.</p> <p>Conclusion</p> <p>Not only the top features newly extracted by PCA or PLS are important, therefore, feature selection should be performed to select subsets from new features to improve generalization performance of classifiers.</p

    Microarray Data Mining and Gene Regulatory Network Analysis

    Get PDF
    The novel molecular biological technology, microarray, makes it feasible to obtain quantitative measurements of expression of thousands of genes present in a biological sample simultaneously. Genome-wide expression data generated from this technology are promising to uncover the implicit, previously unknown biological knowledge. In this study, several problems about microarray data mining techniques were investigated, including feature(gene) selection, classifier genes identification, generation of reference genetic interaction network for non-model organisms and gene regulatory network reconstruction using time-series gene expression data. The limitations of most of the existing computational models employed to infer gene regulatory network lie in that they either suffer from low accuracy or computational complexity. To overcome such limitations, the following strategies were proposed to integrate bioinformatics data mining techniques with existing GRN inference algorithms, which enables the discovery of novel biological knowledge. An integrated statistical and machine learning (ISML) pipeline was developed for feature selection and classifier genes identification to solve the challenges of the curse of dimensionality problem as well as the huge search space. Using the selected classifier genes as seeds, a scale-up technique is applied to search through major databases of genetic interaction networks, metabolic pathways, etc. By curating relevant genes and blasting genomic sequences of non-model organisms against well-studied genetic model organisms, a reference gene regulatory network for less-studied organisms was built and used both as prior knowledge and model validation for GRN reconstructions. Networks of gene interactions were inferred using a Dynamic Bayesian Network (DBN) approach and were analyzed for elucidating the dynamics caused by perturbations. Our proposed pipelines were applied to investigate molecular mechanisms for chemical-induced reversible neurotoxicity

    Inferring Gene Regulatory Networks from Time Series Microarray Data

    Get PDF
    The innovations and improvements in high-throughput genomic technologies, such as DNA microarray, make it possible for biologists to simultaneously measure dependencies and regulations among genes on a genome-wide scale and provide us genetic information. An important objective of the functional genomics is to understand the controlling mechanism of the expression of these genes and encode the knowledge into gene regulatory network (GRN). To achieve this, computational and statistical algorithms are especially needed. Inference of GRN is a very challenging task for computational biologists because the degree of freedom of the parameters is redundant. Various computational approaches have been proposed for modeling gene regulatory networks, such as Boolean network, differential equations and Bayesian network. There is no so called golden method which can generally give us the best performance for any data set. The research goal is to improve inference accuracy and reduce computational complexity. One of the problems in reconstructing GRN is how to deal with the high dimensionality and short time course gene expression data. In this work, some existing inference algorithms are compared and the limitations lie in that they either suffer from low inference accuracy or computational complexity. To overcome such difficulties, a new approach based on state space model and Expectation-Maximization (EM) algorithms is proposed to model the dynamic system of gene regulation and infer gene regulatory networks. In our model, GRN is represented by a state space model that incorporates noises and has the ability to capture more various biological aspects, such as hidden or missing variables. An EM algorithm is used to estimate the parameters based on the given state space functions and the gene interaction matrix is derived by decomposing the observation matrix using singular value decomposition, and then it is used to infer GRN. The new model is validated using synthetic data sets before applying it to real biological data sets. The results reveal that the developed model can infer the gene regulatory networks from large scale gene expression data and significantly reduce the computational time complexity without losing much inference accuracy compared to dynamic Bayesian network

    DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (<it>i</it>) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (<it>ii</it>) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models.</p> <p>Results</p> <p>DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, <it>Fuzzy Pattern</it>) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, <it>Discriminant Fuzzy Pattern</it>) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments.</p> <p>Conclusion</p> <p>DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions <smcaps>GENE</smcaps>CBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released.</p

    Gene set based ensemble methods for cancer classification

    Get PDF
    Diagnosis of cancer very often depends on conclusions drawn after both clinical and microscopic examinations of tissues to study the manifestation of the disease in order to place tumors in known categories. One factor which determines the categorization of cancer is the tissue from which the tumor originates. Information gathered from clinical exams may be partial or not completely predictive of a specific category of cancer. Further complicating the problem of categorizing various tumors is that the histological classification of the cancer tissue and description of its course of development may be atypical. Gene expression data gleaned from micro-array analysis provides tremendous promise for more accurate cancer diagnosis. One hurdle in the classification of tumors based on gene expression data is that the data space is ultra-dimensional with relatively few points; that is, there are a small number of examples with a large number of genes. A second hurdle is expression bias caused by the correlation of genes. Analysis of subsets of genes, known as gene set analysis, provides a mechanism by which groups of differentially expressed genes can be identified. We propose an ensemble of classifiers whose base classifiers are ℓ1-regularized logistic regression models with restriction of the feature space to biologically relevant genes. Some researchers have already explored the use of ensemble classifiers to classify cancer but the effect of the underlying base classifiers in conjunction with biologically-derived gene sets on cancer classification has not been explored

    Clustering of Time-Series Data

    Get PDF
    The process of separating groups according to similarities of data is called “clustering.” There are two basic principles: (i) the similarity is the highest within a cluster and (ii) similarity between the clusters is the least. Time-series data are unlabeled data obtained from different periods of a process or from more than one process. These data can be gathered from many different areas that include engineering, science, business, finance, health care, government, and so on. Given the unlabeled time-series data, it usually results in the grouping of the series with similar characteristics. Time-series clustering methods are examined in three main sections: data representation, similarity measure, and clustering algorithm. The scope of this chapter includes the taxonomy of time-series data clustering and the clustering of gene expression data as a case study
    • 

    corecore