2,126 research outputs found

    Selection in the Presence of Memory Faults, with Applications to In-place Resilient Sorting

    Full text link
    The selection problem, where one wishes to locate the kthk^{th} smallest element in an unsorted array of size nn, is one of the basic problems studied in computer science. The main focus of this work is designing algorithms for solving the selection problem in the presence of memory faults. These can happen as the result of cosmic rays, alpha particles, or hardware failures. Specifically, the computational model assumed here is a faulty variant of the RAM model (abbreviated as FRAM), which was introduced by Finocchi and Italiano. In this model, the content of memory cells might get corrupted adversarially during the execution, and the algorithm is given an upper bound δ\delta on the number of corruptions that may occur. The main contribution of this work is a deterministic resilient selection algorithm with optimal O(n) worst-case running time. Interestingly, the running time does not depend on the number of faults, and the algorithm does not need to know δ\delta. The aforementioned resilient selection algorithm can be used to improve the complexity bounds for resilient kk-d trees developed by Gieseke, Moruz and Vahrenhold. Specifically, the time complexity for constructing a kk-d tree is improved from O(nlog2n+δ2)O(n\log^2 n + \delta^2) to O(nlogn)O(n \log n). Besides the deterministic algorithm, a randomized resilient selection algorithm is developed, which is simpler than the deterministic one, and has O(n+α)O(n + \alpha) expected time complexity and O(1) space complexity (i.e., is in-place). This algorithm is used to develop the first resilient sorting algorithm that is in-place and achieves optimal O(nlogn+αδ)O(n\log n + \alpha\delta) expected running time.Comment: 26 page

    Master of Science

    Get PDF
    thesisTo minimize resource consumption and maximize performance, computer architecture research has been investigating approaches that may compute inaccurate solutions. Such hardware inaccuracies may induce a wide variety of program behaviors which are not obs

    Doctor of Philosophy

    Get PDF
    dissertationCurrent scaling trends in transistor technology, in pursuit of larger component counts and improving power efficiency, are making the hardware increasingly less reliable. Due to extreme transistor miniaturization, it is becoming easier to flip a bit stored in memory elements built using these transistors. Given that soft errors can cause transient bit-flips in memory elements, caused due to alpha particles and cosmic rays striking those elements, soft errors have become one of the major impediments in system resilience as we move towards exascale computing. Soft errors escaping the hardware-layer may silently corrupt the runtime application data of a program, causing silent data corruption in the output. Also, given that soft errors are transient in nature, it is notoriously hard to trace back their origins. Therefore, techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. It is equally important to have a flexible infrastructure capable of simulating realistic soft error models to promote an effective evaluation of newly developed error detectors. In this work, we present a set of techniques for efficiently detecting soft errors affecting control-flow, data, and structured address computations in an application. We evaluate the efficacy of the proposed techniques by evaluating them on a collection of benchmarks through fault-injection driven studies. As an important requirement, we also introduce two new LLVM-based fault injectors, KULFI and VULFI, which are geared towards scalar and vector architectures, respectively. Through this work, we aim to make contributions to the system resilience community by making our research tools (in the form of error detectors and fault injectors) publicly available

    Analyzable dataflow executions with adaptive redundancy

    Get PDF
    Increasing performance requirements in the embedded systems domain have encouraged a drift from singlecore to multicore processors, and thus multicore processors are widely used in embedded systems today. Cars are an example for complex embedded systems in which the use of multicore processors is continuously increasing. A major reason for this is to consolidate different software components on one chip and thus reduce the number of electronic control units. However, the de facto standard in the automotive industry, AUTOSAR (AUTomotive Open System ARchitecture), was originally designed for singlecore processors. Although basic support for multicore processors was added, more complex architectures are currently not compatible with the software stack. Regarding the software components running on the ECUS of modern cars, requirements are diverse. On the one hand, there are safety-critical tasks, like the airbag control, anti-lock braking system, electronic stability control and emergency brake assist, and on the other hand, tasks which do not have any safety-related requirements at all, for example tasks controlling the infotainment system. Trends like autonomous driving lead to even more demanding tasks in the system since such tasks are both safety-critical and data-intensive. As embedded applications, like those in the automotive domain, become more complex, new approaches are necessary. Data-intensive tasks are usually tackled with large-scale computing frameworks. In this thesis, some major concepts of such frameworks are transferred to the high-performance embedded systems domain. For this purpose, the thesis describes a runtime environment (RTE) that is suitable for different kinds of multi- and manycore hardware architectures. The RTE follows a dataflow execution model based on directed acyclic graphs (DAGs). Graphs are divided into sections which are scheduled separately. For each section, the RTE uses a DAG scheduling heuristic to compute multiple schedules covering different redundancy configurations. This allows the RTE to dynamically change the redundancy of parts of the graph at runtime despite the use of fixed schedules. Alternatively, the RTE also provides an online scheduler. To specify suitable graphs, the RTE also provides a programming model which shares similarities with common large-scale computing frameworks, for example Apache Spark. Using this programming model, three common distributed algorithms, namely Cannon's algorithm, the Cooley-Tukey algorithm and bitonic sort, were implemented. With these three programs, the performance of the RTE was evaluated for a variety of configurations on two different hardware architectures. The results show that the proposed RTE is able to reach the performance of established parallel computation frameworks and that for suitable graphs with reasonable sectionings the negative influence on the runtime is either small or non-existent.Aufgrund steigender Anforderungen an die Leistungsfähigkeit von eingebetteten Systemen finden Mehrkernprozessoren mittlerweile auch in eingebetteten Systemen Verwendung. Autos sind ein Beispiel für eingebettete Systeme, in denen die Verbreitung von Mehrkernprozessoren kontinuierlich zunimmt. Ein Hauptgrund ist, dass es dadurch möglich wird, mehrere Applikationen, für die ursprünglich mehrere Electronic Control Units (ECUs) notwendig waren, auf ein und demselben Chip auszuführen und dadurch die Anzahl der ECUs im Gesamtsystem zu verringern. Der De-facto-Standard AUTOSAR (AUTomotive Open System ARchitecture) wurde jedoch ursprünglich nur im Hinblick auf Einkernprozessoren entworfen und, obwohl der Softwarestack um grundlegende Unterstützung für Mehrkernprozessoren erweitert wurde, sind komplexere Architekturen nicht damit kompatibel. Die Anforderungen der Softwarekomponenten von modernen Autos sind vielfältig. Einerseits gibt es hochgradig sicherheitskritische Tasks, die beispielsweise die Airbags, das Antiblockiersystem, die Fahrdynamikregelung oder den Notbremsassistenten steuern und andererseits Tasks, die keinerlei sicherheitskritische Anforderungen aufweisen, wie zum Beispiel Tasks zur Steuerung des Infotainment-Systems. Neue Trends wie autonomes Fahren führen zu weiteren anspruchsvollen Tasks, die sowohl hohe Leistungs- als auch Sicherheitsanforderungen aufweisen. Da die Komplexität eingebetteter Anwendungen, beispielsweise im Automobilbereich, stetig zunimmt, sind neue Ansätze erforderlich. Für komplexe, datenintensive Aufgaben werden in der Regel Cluster-Computing-Frameworks eingesetzt. In dieser Arbeit werden Konzepte solcher Frameworks auf den Bereich der eingebetteten Systeme übertragen. Dazu beschreibt die Arbeit eine Laufzeitumgebung (RTE) für eingebettete Mehrkernarchitekturen. Die RTE folgt einem Datenfluss-Ausführungsmodell, das auf gerichteten azyklischen Graphen basiert. Graphen können in Abschnitte eingeteilt werden, für welche separat mehrere unterschiedlich redundante Schedules mit Hilfe einer Scheduling-Heuristik berechnet werden. Dieser Ansatz erlaubt es, die Redundanz von Teilen der Anwendung zur Laufzeit zu verändern. Alternativ unterstützt die RTE auch Scheduling zur Laufzeit. Zur Erzeugung von Graphen stellt die RTE ein Programmiermodell bereit, welches sich an etablierten Frameworks, insbesondere Apache Spark, orientiert. Damit wurden drei Beispielanwendungen implementiert, die auf gängigen Algorithmen basieren. Konkret handelt es sich um Cannon's Algorithmus, den Cooley-Tukey-Algorithmus und bitonisches Sortieren. Um die Leistungsfähigkeit der RTE zu ermitteln, wurden diese drei Anwendungen mehrfach mit verschiedenen Konfigurationen auf zwei Hardware-Architekturen ausgeführt. Die Ergebnisse zeigen, dass die RTE in ihrer Leistungsfähigkeit mit etablierten Systemen vergleichbar ist und die Laufzeit bei einer sinnvollen Graphaufteilung im besten Fall nur geringfügig beeinflusst wird

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    Information fusion architectures for security and resource management in cyber physical systems

    Get PDF
    Data acquisition through sensors is very crucial in determining the operability of the observed physical entity. Cyber Physical Systems (CPSs) are an example of distributed systems where sensors embedded into the physical system are used in sensing and data acquisition. CPSs are a collaboration between the physical and the computational cyber components. The control decisions sent back to the actuators on the physical components from the computational cyber components closes the feedback loop of the CPS. Since, this feedback is solely based on the data collected through the embedded sensors, information acquisition from the data plays an extremely vital role in determining the operational stability of the CPS. Data collection process may be hindered by disturbances such as system faults, noise and security attacks. Hence, simple data acquisition techniques will not suffice as accurate system representation cannot be obtained. Therefore, more powerful methods of inferring information from collected data such as Information Fusion have to be used. Information fusion is analogous to the cognitive process used by humans to integrate data continuously from their senses to make inferences about their environment. Data from the sensors is combined using techniques drawn from several disciplines such as Adaptive Filtering, Machine Learning and Pattern Recognition. Decisions made from such combination of data form the crux of information fusion and differentiates it from a flat structured data aggregation. In this dissertation, multi-layered information fusion models are used to develop automated decision making architectures to service security and resource management requirements in Cyber Physical Systems --Abstract, page iv

    Algorithm Diversity for Resilient Systems

    Full text link
    Diversity can significantly increase the resilience of systems, by reducing the prevalence of shared vulnerabilities and making vulnerabilities harder to exploit. Work on software diversity for security typically creates variants of a program using low-level code transformations. This paper is the first to study algorithm diversity for resilience. We first describe how a method based on high-level invariants and systematic incrementalization can be used to create algorithm variants. Executing multiple variants in parallel and comparing their outputs provides greater resilience than executing one variant. To prevent different parallel schedules from causing variants' behaviors to diverge, we present a synchronized execution algorithm for DistAlgo, an extension of Python for high-level, precise, executable specifications of distributed algorithms. We propose static and dynamic metrics for measuring diversity. An experimental evaluation of algorithm diversity combined with implementation-level diversity for several sequential algorithms and distributed algorithms shows the benefits of algorithm diversity

    Sorting and Selection with Imprecise Comparisons

    Get PDF
    In experimental psychology, the method of paired comparisons was proposed as a means for ranking preferences amongst n elements of a human subject. The method requires performing all (n2) comparisons then sorting elements according to the number of wins. The large number of comparisons is performed to counter the potentially faulty decision-making of the human subject, who acts as an imprecise comparator. We consider a simple model of the imprecise comparisons: there exists some δ> 0 such that when a subject is given two elements to compare, if the values of those elements (as perceived by the subject) differ by at least δ, then the comparison will be made correctly; when the two elements have values that are within δ, the outcome of the comparison is unpredictable. This δ corresponds to the just noticeable difference unit (JND) or difference threshold in the psychophysics literature, but does not require the statistical assumptions used to define this value. In this model, the standard method of paired comparisons minimizes the errors introduced by the imprecise comparisons at the cost of (n2) comparisons. We show that the same optimal guarantees can be achieved using 4 n 3/2 comparisons, and we prove the optimality of our method. We then explore the general tradeoff between the guarantees on the error that can be made and number of comparisons for the problems of sorting, max-finding, and selection. Our results provide close-to-optimal solutions for each of these problems.Engineering and Applied Science

    Resilience of an embedded architecture using hardware redundancy

    Get PDF
    In the last decade the dominance of the general computing systems market has being replaced by embedded systems with billions of units manufactured every year. Embedded systems appear in contexts where continuous operation is of utmost importance and failure can be profound. Nowadays, radiation poses a serious threat to the reliable operation of safety-critical systems. Fault avoidance techniques, such as radiation hardening, have been commonly used in space applications. However, these components are expensive, lag behind commercial components with regards to performance and do not provide 100% fault elimination. Without fault tolerant mechanisms, many of these faults can become errors at the application or system level, which in turn, can result in catastrophic failures. In this work we study the concepts of fault tolerance and dependability and extend these concepts providing our own definition of resilience. We analyse the physics of radiation-induced faults, the damage mechanisms of particles and the process that leads to computing failures. We provide extensive taxonomies of 1) existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-art electronics, analysing and comparing their characteristics. We propose a detailed model of faults and provide a classification of the different types of faults at various levels. We introduce an algorithm of fault tolerance and define the system states and actions necessary to implement it. We introduce novel hardware and system software techniques that provide a more efficient combination of reliability, performance and power consumption than existing techniques. We propose a new element of the system called syndrome that is the core of a resilient architecture whose software and hardware can adapt to reliable and unreliable environments. We implement a software simulator and disassembler and introduce a testing framework in combination with ERA’s assembler and commercial hardware simulators
    corecore